首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
According to the oxidative damage theory a primary cause of aging is the accrual of molecular damage from reactive oxygen species (ROS), particularly superoxide and its derivatives. This predicts that treatments that reduce ROS levels should retard aging. Using the nematode Caenorhabditis elegans, we tested the effects on stress resistance and life span of treatment with EUK-8 and EUK-134, synthetic mimetics of the antioxidant enzyme superoxide dismutase (SOD), which neutralises superoxide. Treatment with SOD mimetics elevated in vivo SOD activity levels, particularly in mitochondria, where up to 5-fold increases in SOD activity were recorded. Treatment with exogenous SOD mimetics did not affect endogenous protein SOD levels. Where life span was reduced by the superoxide generators paraquat and plumbagin, EUK-8 treatment increased life span in a dose-dependent fashion. Yet in the absence of a superoxide generator, treatment with EUK-8 or EUK-134 did not increase life span, even at doses that were optimal for protection against pro-oxidants. Thus, an elevation of SOD activity levels sufficient to increase life span when it is limited by superoxide generators does not retard aging in the absence of superoxide generators. This suggests that C. elegans life span is not normally limited by levels of superoxide and its derivatives.  相似文献   

2.
Paraquat-induced nephrotoxicity involves severe renal cell damage caused by reactive oxygen species (ROS), specifically via increasing concentrations of superoxide anions in the kidney. Recently, superoxide dismutase (SOD) mimetics (SODm) have been developed that display safe SOD activities but which also possess additional antioxidant enzyme (e.g., catalase) or ROS-scavenging activities. The aim of this study was to compare the effects of two such SODm, specifically, EUK-134, a SODm with catalase activity, and tempol, a SODm with ROS-scavenging properties, on paraquat-induced nephrotoxicity of renal NRK-52E cells. Incubation with paraquat (1 mM) for 24 h reduced cell viability and increased necrosis significantly. Paraquat also generated significant quantities of superoxide anions and hydroxyl radicals. Both EUK-134 (10-300 microM) and tempol (0.3-1.0 mM) were able to improve cell viability and reduced paraquat-induced cell death significantly via dismutation or scavenging of superoxide anions and reduced hydroxyl radical generation. The data presented here suggest that SODm such as EUK-134 and tempol, which possess additional catalase and/or ROS-scavenging activities, can significantly reduce renal cell damage caused by paraquat. These effects were evident at concentrations which avoid the pro-oxidant activities associated with higher concentrations of SOD. Such SODm could therefore prove to be beneficial as therapies for paraquat nephrotoxicity.  相似文献   

3.
本研究旨在探讨依达拉奉(edaravone,ED)在脑缺血再灌注损伤中发挥神经元保护作用与Nrf2信号分子间的关系。体内实验利用脑内脑中动脉闭塞(middle cerebral artery occlusion model,MCAO)建立SD大鼠脑缺血再灌注损伤模型,体外实验采用过氧化氢(H2O2)损伤PC12细胞建立氧化应激模型。通过TTC染色、HE染色、Nissl染色来检测大脑的病理状态。测定活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)含量、超氧化物歧化酶(superoxide dismutase,SOD)活性,来反映氧化应激水平。此外,通过Hoechst 33342染色和线粒体膜电位(mitochondrial membrane potential,MTP)测定,探究细胞水平的损伤。采用免疫组织化学和蛋白质印记测定Nrf2的表达。构建Nrf2敲除的PC12细胞系,证实Nrf2信号分子抑制氧化应激损伤的作用。结果提示,经依达拉奉给药后,在动物体内水平,TTC染色证实,脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIRI)大鼠的脑组织梗死体积减小(P<0.001),ROS和MDA水平下降(P<0.01),SOD活性上升(P<0.01);在细胞水平,凋亡细胞减少(P<0.05),MTP上升(P<0.01),ROS和MDA水平下降,SOD活性上升(P<0.01);在分子水平,免疫组化和Western印迹结果均提示,Nrf2蛋白质含量较正常组增加。H2O2诱导Nrf2基因敲除的PC12细胞损伤加重,且依达拉奉的治疗效果明显削弱。综上所述,Nrf2在依达拉奉减轻脑缺血再灌注诱导的氧化应激损伤中发挥关键作用。  相似文献   

4.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

5.
Oxidative stress, resulting from accumulation of reactive oxygen species (ROS), plays a critical role on astrocyte death associated with neurodegenerative diseases. Astroglial cells produce endozepines, a family of biologically active peptides that have been implicated in cell protection. Thus, the purpose of the present study was to investigate the potential protective effect of one of the endozepines, the octadecaneuropeptide ODN, on hydrogen peroxide (H(2) O(2) )-induced oxidative stress and cell death in rat astrocytes. Incubation of cultured astrocytes with graded concentrations of H(2) O(2) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by lactate dehydrogenase assay. The cytotoxic effect of H(2) O(2) was associated with morphological modifications that were characteristic of apoptotic cell death. H(2) O(2) -treated cells exhibited high level of ROS associated with a reduction of both superoxide dismutases (SOD) and catalase activities. Pre-treatment of astrocytes with low concentrations of ODN dose-dependently prevented cell death induced by H(2) O(2) . This effect was accompanied by a marked attenuation of ROS accumulation, reduction of mitochondrial membrane potential and activation of caspase 3 activity. ODN stimulated SOD and catalase activities in a concentration-dependent manner, and blocked H(2) O(2) -evoked inhibition of SOD and catalase activities. Blockers of SOD and catalase suppressed the effect of ODN on cell survival. Taken together, these data demonstrate for the first time that ODN is a potent protective agent that prevents oxidative stress-induced apoptotic cell death.  相似文献   

6.
Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A major cause of aging and numerous diseases is thought to be cumulative oxidative stress, resulting from the production of reactive oxygen species (ROS) during respiration. Calorie restriction (CR), the most robust intervention to extend life span and ameliorate various diseases in mammals, reduces oxidative stress and damage. However, the underlying mechanism is unknown. Here, we show that the protective effects of CR on oxidative stress and damage are diminished in mice lacking SIRT3, a mitochondrial deacetylase. SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. SIRT3 deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity. Importantly, the ability of SOD2 to reduce cellular ROS and promote oxidative stress resistance is greatly enhanced by SIRT3. Our studies identify a defense program that CR provokes to reduce oxidative stress and suggest approaches to combat aging and oxidative stress-related diseases.  相似文献   

8.
The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.  相似文献   

9.
Although neurotrophins protect PC12 cells and neurons from oxidative stress-induced death, the molecular mechanism of this effect is largely unknown. Xanthine (XA)+xanthine oxidase (XO) increased the production of the superoxide anion (O2-) and hydrogen peroxide (H2O2), and the death of PC12 cells. Catalase but not superoxide dismutase (SOD) nor a NO scavenger protected PC12 cells from death, indicating that H2O2 is the main effector responsible for this cell death. Both nerve growth factor (NGF) and Bcl-2 protected PC12 cells from O2--induced toxicity. NGF enhanced the production of O2- and suppressed that of H2O2, suggesting that it inhibits the conversion of O2- to H2O2, while Bcl-2 had no such effect. These results suggested that NGF protected the cells from oxidative stress by altering the composition of the reactive oxygen species (ROS) without affecting their total level.  相似文献   

10.
Although the relationship between hypercholesterolemia and oxidative stress has been extensively investigated, direct evidence regarding to the roles of cholesterol accumulation in the generations of reactive oxygen species (ROS) and apoptotic cell death under oxidative stress is lack. In this study, we investigated productions of superoxide anions (O(2)(-)) and nitric oxide (NO), and apoptotic cell death in wild type Chinese hamster ovary (CHO) cells and cholesterol accumulated CHO cells genetically and chemically. Oxidative stress was induced by menadione challenge. The results revealed that abundance of free cholesterol (FC) promoted menadione-induced O(2)(-) and NO productions. FC accumulation down-regulated eNOS expression but up-regulated NADPH oxidases, and inhibited the activities of superoxide dismutase (SOD) and catalase. Treatment of menadione increased the expressions of iNOS and qp91 phox, enhanced the activities of SOD and catalase in the wild-type CHO cells but inhibited the activity of glutathione peroxidase in the cholesterol accumulated CHO cells. Moreover, FC abundance promoted apoptotic cell death in these cells. Taken together, those results suggest that free cholesterol accumulation aggravates menadione-induced oxidative stress and exacerbates apoptotic cell death.  相似文献   

11.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

12.
We have studied natural killer (NK) activity, lymphoproliferative response, the release of several cytokines (IL-2, TNF alpha and IL-1 beta) and the ROS production in peritoneal leukocytes obtained 0, 2, 4, 12 and 24 h after lipopolysaccharide (LPS) injection. Lethal septic shock (100 % mortality occurred at 30 h after LPS administration) was caused in female BALB/c mice by intraperitoneal injection of 100 mg/kg of E. coli LPS. Cytotoxicity and lymphoproliferation assay were preformed together with the measurement of IL-1 beta, IL-2 and TNF alpha production, and quantification of ROS. Natural killer activity, spontaneous lymphoproliferative response, IL-2, TNF alpha, IL-beta release and ROS production were increased after LPS injection. In conclusions, ROS and proinflammatory mediators produced by immune cells in response to LPS are involved in the oxidative stress of endotoxic shock. This oxidative state alters some functional characteristics of leukocytes (proliferation and NK activity).  相似文献   

13.
Reactive oxygen species (ROS) and nitric oxide (NO) have a role in the development of pulmonary fibrosis after bleomycin administration. The ROS production induces an antioxidant response, involving superoxide dismutases (SODs), catalase, and glutathione peroxidases. We compared in situ oxidative burden and antioxidant enzyme activity in bleomycin-injured rat lungs and normal controls. ROS expression and catalase, glucose-6-phosphate-dehydrogenase (G6PHD), and NOS/NADPH-diaphorase activity were investigated by using histochemical reactions. Nitric oxide synthase (e-NOS and i-NOS) and SOD (MnSOD, Cu/ZnSOD, ECSOD) expression was investigated immunohistochemically. After treatment ROS production was enhanced in both phagocytes and in type II alveolar epithelial cells. Mn, Cu/Zn, and ECSOD were overexpressed in parenchymal cells, whereas interstitium expressed ECSOD. Catalase and G6PHD activity was moderately increased in parenchymal and inflammatory cells. NOS/NADPH-d activity and i-NOS expression increased in alveolar and bronchiolar epithelia and in inflammatory cells. It can be suggested that the concomitant activation of antioxidant enzymes is not adequate to scavenge the oxidant burden induced by bleomycin lung damage. Inflammatory cells and also epithelial cells are responsible of ROS and NO production. This oxidative and nitrosative stress may be a substantial trigger in TGF-β1 overexpression by activated type II pneumocytes, leading to fibrotic lesions.  相似文献   

14.
Staphylococcus aureus with multiple sensitivity to ciprofloxacin, was investigated to detect alterations in the production of superoxide anion (O(2)(-)), other reactive oxidant species (ROS), and superoxide dismutase (SOD), and to relate them with ciprofloxacin accumulation and sensitivity. Oxidative stress was studied by means of Nitroblue Tetrazolium reaction (NBT) and chemiluminescence (CL); lucigenin was employed to detect O(2)(-), and luminol was used to measure other ROS. Sensitive strains exhibited higher intracellular O(2)(-) increase than resistant ones when incubated with ciprofloxacin. SOD was determined in normal conditions and induction was investigated in the presence of ciprofloxacin. These assays demonstrated that resistant and sensitive strains exported a great amount of SOD and that the induction of SOD intracellular was insufficient to counteract the augment of O(2)(-) in the cytoplasm of sensitive strains. Accumulation of ciprofloxacin, researched by spectrofluorometry, showed high levels of antibiotic in sensitive strains which increased the O(2)(-) causing more oxidative stress than in resistant S. aureus.  相似文献   

15.
Recent data indicate that the oxidative stress plays an important role in the pathogenesis of diabetes and its complications such as retinopathy, nephropathy and accelerated atherosclerosis. In diabetic retinopathy, it was demonstrated a selective loss of pericytes accompanied by capillary basement membrane thickening, increased permeability and neovascularization. This study was designed to investigate the role of diabetic conditions such as high glucose, AGE-Lysine, and angiotensin II in the modulation of antioxidant enzymes activities, glutathione level and reactive oxygen species (ROS) production in pericytes. The activity of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total glutathione (GSH) was measured spectrophotometrically. The production of ROS was detected by spectrofluorimetry and fluorescence microscopy after loading the cells with 2'-7' dichlorofluoresceine diacetate; as positive control H2O2 was used. Intracellular calcium was determined using Fura 2 AM assay. The results showed that the cells cultured in high glucose alone, do not exhibit major changes in the antioxidant enzyme activities. The presence of AGE-Lys or Ang II induced the increase of SOD activity. Their combination decreased significantly GPx activity and GSH level. A three times increase in ROS production and a significant impairment of intracellular calcium homeostasis was detected in cells cultured in the presence of the three pro-diabetic agents used. In conclusion, our data indicate that diabetic conditions induce in pericytes: (i) an increase of ROS and SOD activity, (ii) a decrease in GPx activity and GSH level, (iii) a major perturbation of the intracellular calcium homeostasis. The data may explain the structural and functional abnormalities of pericytes characteristic for diabetic retinopathy.  相似文献   

16.

Background

Spermatogonia are highly tolerant to reactive oxygen species (ROS) attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown.

Methodology/Principal Findings

Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2′-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD) and Western blot analysis using an anti-Copper/Zinc (Cu/Zn) SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage.

Conclusions/Significance

These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.  相似文献   

17.
18.
As immature and aged rats could be more sensitive to ozone (O(3))-linked lung oxidative stress we have attempted to shed more light on age-related susceptibility to O(3) with focusing our interest on lung mitochondrial respiration, reactive oxygen species (ROS) production and lung pro/antioxidant status. For this purpose, we exposed to fresh air or O(3) (500 ppb 12 h per day, for 7 days) 3 week- (immature), 6 month- (adult) and 20 month-old rats (aged). We determined, in lung, H(2)O(2) release by mitochondria, activities of major antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)], heat shock protein (HSP(72)) content and 8-oxodG and dG-HNE nDNA contents, as DNA oxidative damage markers. In adult rats we did not observe alteration of pro/antioxidant status. In contrast to adults, immature rats exposed to O(3) higher nDNA 8-oxodG content and HSP(72) and without antioxidant enzymes modification. Aged rats displayed mild uncoupled lung mitochondria, increased SOD and GPx activities, and higher 8-oxodG content after O(3) exposure. Thus, in contrast to adults, immature and aged rats displayed lung oxidative stress after O(3) exposure. Higher sensitivity of immature to O(3) was partly related to ventilatory parameters and to the absence of antioxidant enzyme response. In aged rats, the increase in cytosolic SOD and GPx activities during O(3) exposure was not sufficient to prevent the impairment in mitochondrial function and accumulation in lung 8- oxodG. Finally, we showed that mitochondria seem not to be a major source of ROS under O(3) exposure.  相似文献   

19.
Subacute myelo-optico-neuropathy (SMON) is a progressive neurological disorder affecting the spinal cord, peripheral nerves and optic nerves. Although it has been assumed that SMON was caused by intoxication of clioquinol, the mechanism underlying clioquinol-induced neurotoxicity is not fully understood. This study aimed to clarify the relevance of oxidative stress to clioquinol-induced neurotoxicity and the cause of the enhanced oxidative stress. Clioquinol induced cell death in human-derived neuroblastoma cell line, SH-SY5Y, in a dose-dependent manner. This process was accompanied by activation of caspase-3 and enhanced production of reactive oxygen species (ROS). We examined whether clioquinol inhibited the activity of superoxide dismutase-1 (SOD1), based on its metal chelating properties. Clioquinol inhibited activities of purified SOD1 in a dose-dependent manner. Cytosolic SOD activities were also inhibited in SH-SY5Y cells treated with clioquinol. Finally, addition of exogenous SOD1 to the culture significantly reduced enhanced ROS production and cell death induced by clioquinol in SH-SY5Y cells. These findings suggested that enhanced oxidative stress caused by inhibition of SOD1 undelay clioquinol-induced neurotoxicity and was relevant to the pathogenesis of SMON.  相似文献   

20.
Reactive oxygen species (ROS)-induced genomic damage may have important consequences in the initiation and progression of cancer. Deregulated expression of the proto-oncogene c-MYC is associated with intracellular oxidative stress and increased DNA damage. However, the protective role of antioxidants such as Vitamin C against MYC-induced genomic damage has not been fully investigated. In a variety of cell lines, we show that ectopic MYC over-expression results in the elevation of intracellular ROS levels and a concomitant increase in oxidative DNA damage, as assessed by levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in the genomic DNA. Loading cells with ascorbic acid (AA) relieved MYC-elicited intracellular oxidative stress and conferred genomic protection. A mitochondrially targeted Vitamin E analog, TPPB, also protected cells from MYC-elicited oxidative DNA damage, suggesting the involvement of mitochondria in increased ROS production. We found that deregulated MYC expression resulted in the attenuation of intracellular glutathione levels, which was reversed by loading cells with Vitamin C. Additionally, cells over-expressing MYC had elevated levels of intracellular superoxide, which was significantly quenched by Vitamin C or the selective superoxide quencher, Tiron. Consequently, Vitamin C and other antioxidants protected cells from MYC-induced cellular transformation. Our studies implicate a role for ROS, and superoxide in particular, in MYC-elicited oxidative DNA damage and cellular transformation, and point to a pharmacological role of antioxidants in cancer chemoprevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号