首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis.  相似文献   

2.
A highly unstable allele has been isolated at the white locus of Drosophila mauritiana, a sibling species of D. melanogaster. This allele, white-peach (wpch), mutates spontaneously in males and females to give both wild-type and bleached-white derivatives. The mutation frequency is about 10(-3) mutations/generation. There is no evidence for clustering among mutant progeny, and phenotypically wpch flies with mosaic patches of wild-type tissue in the eyes are frequently recovered. Another X-linked locus, plum, is destabilized when wpch is on the same X chromosome.  相似文献   

3.
Ectopic recombination between interspersed repeat sequences generates chromosomal rearrangements that have a major impact on genome structure. A survey of ectopic recombination in the region flanking the white locus of Drosophila melanogaster identified 25 transposon-mediated rearrangements from four parallel experiments. Eighteen of the 25 were generated from females carrying X chromosomes heterozygous for interspersed repeat sequences. The cytogenetic and molecular analyses of the rearrangements and the parental chromosomes show: (1) interchromosomal and intrachromosomal recombinants are generated in about equal numbers; (2) ectopic recombination appears to be a meiotic process that is stimulated by the interchromosomal effect to about the same degree as regular crossing over; (3) copies of the retrotransposon roo were involved in all of the interchromosomal exchanges; some copies were involved much more frequently than others in the target region; (4) homozygosis for interspersed repeat sequences and other sequence variations significantly reduced ectopic recombination.  相似文献   

4.
Y. H. Inoue  T. Taira    M. T. Yamamoto 《Genetics》1988,119(4):903-912
A spontaneous white mutation, white-milky (wmky) of Drosophila simulans is moderately unstable and is associated with a 16-kb long DNA insertion into the white gene. wmky, which is an unstable mutation found in D. simulans, has been genetically analyzed. Among nine spontaneous, partial reversions toward wild type, five were white locus mutations. They are phenotypically different from each other and three show eye color sexual dimorphism indicating a failure of the dosage compensation mechanism. Two w locus mutations whose eye color appeared identical between males and females were also isolated. Of the other back-mutants, three were associated with a recessive suppressor of wmky and one was a semidominant suppressor. These suppressor loci are located on the third chromosome at map positions about 90 and 120, respectively. The suppressor mutations demonstrate specific effects on w locus mutations derived from wmky which lack in the gene dosage compensation. Somatic instability was detected at the frequency of 5.6 X 10(-4) in wmky flies heterozygous for the recessive suppressor and the frequency was increased 10-fold when the suppressor mutation was placed in a different genetic background.  相似文献   

5.
Relationships between the occurrence frequencies of intragenic recombinants and the allele frequencies at the Est-alpha locus were examined in two ecological populations of Drosophila virilis. The effective occurrence rate of recombinant alleles is on the average 0.95 X 10(-5). The effects of the recombination were slightly recognized in terms of the allele frequencies.  相似文献   

6.
A. J. Hilliker  S. H. Clark    A. Chovnick 《Genetics》1991,129(3):779-781
The effect of simple DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster was assayed. Two crosses were performed involving nearly identical molecular distances between selective ry null mutations (3778 nucleotides and 3972 nucleotides). In one heterozygote (ry606/ry531), in addition to the nucleotide substitution ry- mutations, there were 11 simple nucleotide polymorphisms between the selective markers as well as additional flanking simple nucleotide polymorphisms within the rosy locus. In the other heterozygote (ry606/ry609), there were no additional polymorphisms because the two rosy nucleotide substitution mutations were induced on the same rosy isoallele (ry+6). From ry606/ry531 heterozygous females, 27 intragenic crossovers and five marker conversions were seen among 4.53 x 10(5) progeny. From ry606/ry609 heterozygous females, 23 intragenic crossovers and eight marker conversions were seen among 4.18 x 10(5) progeny. The intragenic crossover frequencies per kilobase of DNA were very similar, 1.6 x 10(-5) for ry606/ry531 and 1.4 x 10(-5) for ry606/ry609. Thus, simple DNA sequence polymorphisms neither inhibit nor promote intragenic recombination in D. melanogaster.  相似文献   

7.
Evolutionary changes during the process of sex chromosome differentiation in Drosophila miranda are associated with massive DNA rearrangements. Comparing the DNA structure of the larval cuticle protein (Lcp) region from the X2 and neo-Y chromosome pair, we observed insertions, deletions and a large duplication at the neo-Y chromosomal locus. The duplication encompasses a complete copy of the neo-Y allele of Lcp2, and the ISY3 and the ISY4 insertion sequences. The latter was identified as a retrotransposon, termed TRIM. ISY3 shows DNA sequence similarity to P element homologs identified in the Drosophila obscura species group. We were interested in mechanistic aspects generating the duplication. We cannot exclude unequivocally that unequal sister-chromatid exchange could give rise to the observed duplication; however, recombination is a rare event in Drosophila males. Location and sequence of the retrotransposon TRIM served as molecular markers allowing us to reconstruct two intrachromosomal transposition events that could lead to the observed duplication.  相似文献   

8.
DNA sequence of the white locus of Drosophila melanogaster   总被引:59,自引:0,他引:59  
The DNA sequence of the white locus of Drosophila melanogaster is presented. This 14,100 base-pair sequence includes the region of the locus required for wild-type levels of expression and control of expression. We also report the sequence of a complementary DNA clone which established the position of the 3' end of the white RNA on this genomic sequence. The probable exon-intron structure of the gene has been predicted from the DNA sequence of the regions known to be represented in the RNA. The amino acid sequence of the protein which would be produced by translation of this RNA suggests that the white locus gene product may be a membrane protein. The DNA sequence rearrangements associated with seven insertion mutants (white-dominant-zeste-like (wDZL), white-spotted (wsp), white-honey (wh), white-zeste-mottled (wzm), white-apricot (wa), white-buff (wbf) and white-hd81b11 (whd81b11)), one deletion mutant (white-spotted 4 (wsp4)) and one internal duplication mutant (white-ivory (wi)) have been determined and positioned on the wild-type sequence. The positions of these insertions and those of previously characterized insertions associated with six other mutations suggest that some insertions within an intron may still allow the production of correctly spliced RNA, but affect the amount, and correspondingly the expression of the w locus.  相似文献   

9.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

10.
We have studied frequencies of mutations induced at the b locus of the fish, Medaka Oryzias latipes, after gamma-irradiation. Homozygotes for the b locus have colorless melanophores whose phenotypic expression can be distinguished from that of the wild type. An advantage of the use of oviparous fish for detection of skin color mutations is that the mutant phenotype can be confirmed as early as 1.5 days after fertilization because of the transparent egg membrane of the embryo. Wild-type (B/B) male fish were exposed to 4.75 or 9.5 Gy of 137Cs gamma-rays at a dose rate of 0.95 Gy/min and then mated with the female testers (b/b). A total of 77,761 F1 offspring were examined for mutation and other abnormalities. In the control, we had 1 mutant among 22,068 offspring, resulting in a mutation rate of 4.53 X 10(-5)/locus/gamete. However, this mutant embryo died before hatching. Therefore, in an attempt to present specific-locus mutation frequencies in the fish, the frequencies of color mutants that survived more than 4 days after hatching were used as frequencies of viable mutants; (number of viable color mutants)/(number of hatched fry that survived more than 4 days after hatching). In the 4.75 Gy-irradiated group the viable mutant frequencies were 45.0 X 10(-5), 69.7 X 10(-5) and 0/locus/gamete, while exposure to 9.5 Gy resulted in mutation rates of 217 X 10(-5), 130 X 10(-5) and 8.06 X 10(-5), respectively, for sperm, spermatids and spermatogonia. In comparison with viable color mutant frequencies those of the total color mutants, which include such mutants as ones that died before hatching (defined as number of total color mutants/number of fertilized eggs minus number of early deaths), were considerably higher. For sperm, spermatids, and spermatogonia after exposure to 4.75 Gy, the frequencies were 1180 X 10(-5), 629 X 10(-5) and 9.90 X 10(-5)/locus/gamete, respectively, and in 9.5-Gy-irradiated fish, the frequencies were 1940 X 10(-5), 953 X 10(-5) and 55.5 X 10(-5). Although our data are incomplete, the present results were compared with mutation induction in mice. We concluded that the frequencies of viable color mutants in the fish can be compared with those in mice.  相似文献   

11.
Homologous recombination (HR) is important in repairing errors of replication and other forms of DNA damage. In mammalian cells, potential templates include the homologous chromosome, and after DNA replication, the sister chromatid. Previous work has shown that the mammalian recombination machinery is organized to suppress interchromosomal recombination while preserving intrachromosomal HR. In the present study, we investigated spontaneous intrachromosomal HR in mouse hybridoma cell lines in which variously numbered tandem repeats of the µ heavy chain constant (Cµ) region reside at the haploid, chromosomal immunoglobulin µ heavy chain locus. This organization provides the opportunity to investigate recombination between homologous gene repeats in a well-defined chromosomal locus under conditions in which recombinants are conveniently recovered. This system revealed several features about the mammalian intrachromosomal HR process: (i) the frequency of HR was high (recombinants represented as much as several percent of the total of recombinants and non-recombinants); (ii) the recombination process appeared to be predominantly non-reciprocal, consistent with the possibility of gene conversion; (iii) putative gene conversion tracts were long (up to 13.4 kb); (iv) the recombination process occurred with precision, initiating and terminating within regions of shared homology. The results are discussed with respect to mammalian intrachromosomal HR involving interactions both within and between sister chromatids.  相似文献   

12.
The UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity. XPF expression was found to be several-fold lower in UV41 compared to its parental cell line, AA8. Using approaches we previously developed to study intrachromosomal recombination in CHO cells, we modified UV41 and its parental cell line AA8 to allow site-specific gene targeting at a Flp recombination target (FRT) in intron 3 of the endogenous adenine phosphoribosyltransferase (APRT) locus. Using FLP/FRT targeting, we integrated a plasmid containing an I-SceI endonuclease sequence into this site in the paired cell lines to generate a heteroallelic APRT duplication. Frequencies of intrachromosomal recombination between APRT heteroalleles and the structures of resulting recombinants were analyzed after I-SceI induction of site-specific double-strand breaks (DSBs) in a non-homologous insertion contained within APRT homology. Our results show that I-SceI induced a small proportion of aberrant recombinants reflecting DSB-induced deletions/rearrangements in parental, repair-proficient AA8 cells. However, in XPF mutant UV41, XPF heterozygosity is responsible for a similar, but much more pronounced genomic instability phenotype, manifested independently of DSB induction. In addition, gene conversions were suppressed in UV41 cells compared to wild-type cells. These observations suggest that UV41 exhibits a genomic instability phenotype of aberrant recombinational repair, confirming a critical role for XPF in mammalian cell recombination.  相似文献   

13.
Plasmids were constructed to investigate homologous mitotic recombination in Drosophila cells. Heteroalleles containing truncated but overlapping segments of the bacterial beta-galactosidase gene (lacZ) were positioned either on separate plasmids or as direct repeats on the same chromosome. Recombination reconstituted a functional lacZgene leading to expression of LacZ+activity detectable by histochemical staining. High extrachromosomal recombination (ECR) frequencies between unlinked heteroalleles were observed upon transient co-transfection into Drosophila melanogaster Schneider line 2 (S2) cells. Stably transfected cells containing the lacZ heteroalleles linked on a chromosome exhibited intrachromosomal recombination (ICR) frequencies two orders of magnitude lower than ECR frequencies. Recombination was inducible by exposing the cells to ethyl methanesulphonate or mitomycin C. Recombination products were characterized by multiplex PCR analysis and unequal sister chromatid recombination was found as the predominant mechanism reconstituting the lacZ gene. To investigate recombination in vivo imaginal disc cells from transgenic larvae carrying the reporter gene on the X chromosome were isolated and stained for LacZ+ activity. The presence of a few LacZ+ clones indicated that mitotic recombination events occurred at frequencies two orders of magnitude lower than the corresponding event in cultured cells and late during larval development.  相似文献   

14.
Somatic reversion of strains with the ivory (wi) allele, a mutation associated with a tandem duplication of a DNA sequence at the white locus, increased with the age of larvae at the time of X-irradiation as expected from the increase in the number of target cells. In contrast, two independently isolated strains with unstable w+ loci associated with insertion of transposable elements showed higher reversion frequencies after treatment with X rays or ethyl methanesulfonate (EMS) at early larval stages than at late stages. Nevertheless, both the wi strain and the two unstable w+ strains reverted at nearly equal rates after treatment with X rays or EMS at early larval stages. Possible similarity in "hot spot" structure for the high reversibility of the two types of mutations is discussed in relation to production of presumed "mutator-type" cofactors specific to the transposon-caused mutations at early larval stages.  相似文献   

15.
A Hybrid Dysgenesis Syndrome in Drosophila Virilis   总被引:3,自引:1,他引:2       下载免费PDF全文
A new example of ``hybrid dysgenesis' has been demonstrated in the F(1) progeny of crosses between two different strains of Drosophila virilis. The dysgenic traits were observed only in hybrids obtained when wild-type females (of the Batumi strain 9 from Georgia, USSR) were crossed to males from a marker strain (the long-established laboratory strain, strain 160, carrying recessive markers on all its autosomes). The phenomena observed include high frequencies of male and female sterility, male recombination, chromosomal nondisjunction, transmission ratio distortion and the appearance of numerous visible mutations at different loci in the progeny of dysgenic crosses. The sterility demonstrated in the present study is similar to that of P-M dysgenesis in Drosophila melanogaster and apparently results from underdevelopment of the gonads in both sexes, this phenomenon being sensitive to developmental temperature. However, in contrast to the P-M and I-R dysgenic systems in D. melanogaster, in D. virilis the highest level of sterility (95-98%) occurs at 23-25°. Several of the mutations isolated from the progeny of dysgenic crosses (e.g., singed) proved to be unstable and reverted to wild type. We hypothesize that a mobile element (``Ulysses') which we have recently isolated from a dysgenically induced white eye mutation may be responsible for the phenomena observed.  相似文献   

16.
The RAD1 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of damaged DNA. In this paper, we report our observations on the effect of the RAD1 gene on genetic recombination. Mitotic intrachromosomal and interchromosomal recombination in RAD+, rad1, rad52, and other rad mutant strains was examined. The rad1 deletion mutation and some rad1 point mutations reduced the frequency of intrachromosomal recombination of a his3 duplication, in which one his3 allele is deleted at the 3' end while the other his3 allele is deleted at the 5' end. Mutations in the other excision repair genes, RAD2, RAD3, and RAD4, did not lower recombination frequencies in the his3 duplication. As expected, recombination between the his3 deletion alleles in the duplication was reduced in the rad52 mutant. The frequency of HIS3+ recombinants fell synergistically in the rad1 rad52 double mutant, indicating that the RAD1 and RAD52 genes affect this recombination via different pathways. In contrast to the effect of mutations in the RAD52 gene, mutations in the RAD1 gene did not lower intrachromosomal and interchromosomal recombination between heteroalleles that carry point mutations rather than partial deletions; however, the rad1 delta mutation did lower the frequency of integration of linear plasmids and DNA fragments into homologous genomic sequences. We suggest that RAD1 plays a role in recombination after the formation of the recombinogenic substrate.  相似文献   

17.
Galli A  Cervelli T  Schiestl RH 《Genetics》2003,164(1):65-79
The DNA polymerase delta (Pol3p/Cdc2p) allele pol3-t of Saccharomyces cerevisiae has previously been shown to increase the frequency of deletions between short repeats (several base pairs), between homologous DNA sequences separated by long inverted repeats, and between distant short repeats, increasing the frequency of genomic deletions. We found that the pol3-t mutation increased intrachromosomal recombination events between direct DNA repeats up to 36-fold and interchromosomal recombination 14-fold. The hyperrecombination phenotype of pol3-t was partially dependent on the Rad52p function but much more so on Rad1p. However, in the double-mutant rad1 Delta rad52 Delta, the pol3-t mutation still increased spontaneous intrachromosomal recombination frequencies, suggesting that a Rad1p Rad52p-independent single-strand annealing pathway is involved. UV and gamma-rays were less potent inducers of recombination in the pol3-t mutant, indicating that Pol3p is partly involved in DNA-damage-induced recombination. In contrast, while UV- and gamma-ray-induced intrachromosomal recombination was almost completely abolished in the rad52 or the rad1 rad52 mutant, there was still good induction in those mutants in the pol3-t background, indicating channeling of lesions into the above-mentioned Rad1p Rad52p-independent pathway. Finally, a heterozygous pol3-t/POL3 mutant also showed an increased frequency of deletions and MMS sensitivity at the restrictive temperature, indicating that even a heterozygous polymerase delta mutation might increase the frequency of genetic instability.  相似文献   

18.
Methoprene, a chemical analog of juvenile hormone, is toxic when applied to late third-instar larvae of Drosophila melanogaster. Using an ethyl methane sulfonate mutagenesis screen, we have selected two noncomplementing mutants, one of which is nearly 100 times more resistant than wild-type to either methoprene or juvenile hormone III topically applied or incorporated into the diet. The mutation, named methoprene-tolerant (Met), also confers resistance to methoprene-induced pseudotumor formation in larvae as well as to juvenile hormone III- or methoprene-induced vitellogenic oocyte development in adult females. Met adults show little or no cross-resistance to four other insecticides. The mutation was mapped by recombination to a location 35.4 on the X-chromosome and uncovered by chromosomes deficient for the region 10C2-10D4. Complementation was observed between Met and a lethal allele of the RNA polymerase II locus, which is also found in this region. Since the Met mutation also confers resistance to methoprene-induced abnormalities in adult cuticle formation, the autonomy of Met expression could be evaluated in flies mosiac for this mutation. Autonomous expression of Met was found both in abdominal cuticle as well as in external male genitalia. The characteristics of Met are consistent with those expected of a mutant having altered juvenile hormone reception in target tissue.  相似文献   

19.
A targeted gene knockout in Drosophila   总被引:6,自引:0,他引:6  
Rong YS  Golic KG 《Genetics》2001,157(3):1307-1312
We previously described a method for targeted homologous recombination at the yellow gene of Drosophila melanogaster. Because only a single gene was targeted, further work was required to show whether the method could be extended to become generally useful for gene modification in Drosophila. We have now used this method to produce a knockout of the autosomal pugilist gene by homologous recombination between the endogenous locus and a 2.5-kb DNA fragment. This was accomplished solely by tracking the altered genetic linkage of an arbitrary marker gene as the targeting DNA moved from chromosome X or 2 to chromosome 3. The results indicate that this method of homologous recombination is likely to be generally useful for Drosophila gene targeting.  相似文献   

20.
An account is provided of two genetic schemes in the Drosophila melanogaster female designed as rapid detectors of chemically induced aneuploidy, including both chromosome gain and chromosome loss. One scheme is referred to as FIX, in which the female carried free (heterozygously) inverted X (chromosomes) and the other, ZESTE, where females do not carry inversions and the X-linked sexually dimorphic zeste mutation plays the key role in the detection of aneuploid offspring. The principle attribute of the FIX system is that all euploid offspring are wild-type for body and eye color whereas aneuploid females have a yellow body and aneuploid males white eyes; int he ZESTE system all euploid individuals are wild-type for eye color, aneuploid females possess zeste-colored eyes and aneuploid males white eyes. In addition induced polyploidies (2X:2A gametes) appear as yellow and zeste male intersexes in the FIX and ZESTE systems, respectively. In this way all aneuploids are recognized immediately. Consequently, detection of compounds with weak effects requiring large sample sizes may be made in a fraction of the time associated with more traditional schemes for aneuploidy detection in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号