首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific oligonucleotide has been used to isolate a cDNA prepared from the mRNA for a trout High Mobility Group (HMG) protein closely related to trout HMG-T and bovine HMG 1 and 2 proteins. The sequence isolated more closely resembles bovine HMG-1 than the previously sequenced HMG-T protein in regions corresponding to the N terminal half of the protein. Northern blot analysis at low stringency indicated that 2 related sequences are expressed in total trout testis mRNA. Southern blots of total trout DNA indicate that several different forms of the homologous sequence are present in the trout genome and an estimate of copy number by dot-blot shows 4 HMG-T genes per trout sperm DNA equivalent. Analysis of mRNA from several trout tissues, including testis, liver and kidney indicates that expression of genes for histones and the larger HMG proteins in trout is not closely coupled.  相似文献   

2.
The trout testis contains two major high mobility group (HMG) proteins HMG-T and H6 which, although related to the four mammalian HMGs, exhibit distinct variation as evidenced by differences in electrophoretic mobility and amino acid sequence. Previous work using various endonucleases as probes has shown that HMG-T and H6 are located at specific sites in the testis chromatin. The differentiation of testis cells during spermatogenesis is characterized by a unique transition from a histone-packaged genome to one bound by a class of small molecular weight, highly basic proteins, the protamines. Questions arise as to whether any of the HMG variability may be unique to the process of spermatogenesis and whether the histone-protamine transition occurring in most testis cells affects the HMG protein distribution and/or the specificity of the probe. In an attempt to answer these questions, the distribution of the HMG proteins in the chromatin of trout liver, a tissue lacking protamine, has been studied and comparisons made with testis. Liver HMGs exhibit the same electrophoretic characteristics as the testis HMGs indicating that the variability when compared to mammalian HMGs is primarily phylogenetic in origin rather than tissue-specific. Furthermore, micrococcal nuclease digestion of liver nuclei and its effect on the subsequent HMG protein distribution during chromatin fractionation yields a pattern very similar to that for testis, suggesting that the interaction of the HMGs with the remaining testis nucleohistone is not significantly altered by the ongoing transition to nucleoprotamine. Finally, the HMGs represent an unusually high proportion of the total testis non-histone protein population; the implications of this are discussed.  相似文献   

3.
Binding of HMG-T to trout testis chromatin   总被引:1,自引:0,他引:1  
When 125I-labeled HMG-T was incubated with trout testis nuclei under conditions of pH and ionic strength approximating those in vivo, most of the radioactivity bound to the chromatin. Most labeled non-nuclear proteins which were tested did not bind. Four large cyanogen bromide fragments of HMG-T each bound, suggesting that HMG-T interacts with chromatin along most of its length. Trout testis chromatin contains two populations of HMG-T molecules which differ in their extractability with NaCl solutions; the 125I-labeled protein equilibrated mainly with the more readily extracted population. HMG-T also bound to nuclease-treated chromatin, an observation with important implications for studies in which nucleases are employed to probe chromatin structure.  相似文献   

4.
5.
The trout histone H2A variant H2A.Z has been identified by its electrophoretic mobility on two-dimensional polyacrylamide gels and its N-terminal amino acid sequence. Similar to bovine H2A.Z and chicken H2A.F (also called H2A.Z and M1), the trout H2A.Z had a two-residue extension when aligned with trout H2A and a 67% sequence homology with the N-terminal portion of trout H2A. The first 29 amino acids of trout H2A.Z were identical with those of chicken H2A.F and differed from those of bovine H2A.Z at only one position. Thus, the N-terminal part of histone H2A.Z appears to be highly conserved. The levels of histone H2A.Z and ubiquitinated species of the histones H2A, H2A.Z, and H2B, which were detected with an anti-ubiquitin antibody, were studied at various stages of trout testis development. At the final stages of spermatogenesis in trout, histones are replaced by protamines. Ubiquitinated and diubiquitinated histone H2A remained at similar levels in early and late stage testis nucleohistone. In the late stage testis chromatin (nucleohistone), ubiquitinated histone H2A.Z was not detected, the level of ubiquitinated histone H2B was reduced, and the amount of diubiquitinated histone H2B increased. There was also a marked reduction in the level of histone H2A.Z. This observation suggests nucleosomes with this histone variant were selectively disassembled during the transition from nucleohistone to nucleoprotamine, indicating that protamine deposition is not a random process in rainbow trout.  相似文献   

6.
Two proteins, HMG-T1 and HMG-T2, with electrophoretic mobilities and compositions similar to those of protein HMG-T, were isolated from trout testes nuclei. The isoelectric points of proteins HMG-T1, HMG-T2 and HMG-T differ. The first 20 residues of protein HMG-T2 have been sequenced and differ from protein HMG-T by only one residue.  相似文献   

7.
The complete amino acid sequence of a basic non-histone protein, H6, isolated from the chromatin of rainbow trout (Salmo gairdnerii) testis cells, has been determined. Protein H6, first described by D. T. Wigle and G. H. Dixon [J. Biol. Chem. 246, 5636--5644 (1971)] was extracted with 5% trichloracetic acid and purified by ion-exchange chromatography on carboxymethyl-cellulose (CM-52). Sequence analysis was performed by automatic Edman degradation of the amino terminus of the intact protein and a series of large fragments derived by cleavage with chymotrypsin, staphylococcal protease and with mild acid to cleave at aspartic acid residues. Protein H6 possesses 69 residues and shows considerable similarities to the 89-residue calf thymus HMG-17 protein previously sequenced [Walker, J. M., Hastings, J. R. B. & Johns, E. W. (1977) Eur. J. Biochem. 76, 461--468]. B. Levy W. and G. H. Dixon [Proc. Natl Acad. Sci. U.S.A. 74, 2810--2814 (1977)] have shown that H6 is selectively solubilized when trout testis nuclei (or chromatin) are digested with DNase I under conditions which preferentially hydrolyze that portion of DNA enriched in transcribed sequences [Levy, W. B. & Dixon, G. H. (1977) Nucleic Acids Res. 4, 883--898]. Recently H6 has been located as a stoichiometric component of a distinct subset of trout testis nucleosomes that are complexed with a core nucleosome comprising 140 base pairs of DNA and the inner histones H2A, H2B, H3 and H4 [Levy, W. B., Connor, W. & Dixon, G. H. (1979) J. Biol. Chem., in the press].  相似文献   

8.
9.
10.
Isolated trout testis nuclei rapidly incorporate [alpha-32P]NAD+ into chromosomal proteins. Three proteins, very-lysine-rich histone (H1), a specific trout chromosomal protein (H6) and the sperm-specific protamines, incorporate the label as adenosine diphosphoribosyl (ADP-Rib) residues. No significant labeling of the nucleosomal 'core' histones H2A, H2B, H3 and H4 was observed. The linkage of the [32P](ADP-Rib) residues to each protein was very labile at pH values greater than 7.0 but by working at acidic pH and low temperatures the ADP-Rib label could be shown to be covalently bound to protein by gel electrophoresis and ion-exchange chromatography. The [32P]ADP-Rib chains could be removed by digestion with snake venom phosphodiesterase with the formation of AMP and phosphoribosyl-AMP.  相似文献   

11.
Specific lysyl residues of trout testis histones H3 and H4 are methylated partially during rainbow trout spermatogenesis. Histones H1, H2A, H2B, and protamine are not methylated. The single site (lysine 20) in histone H4 and the two major sites (lysines 9 and 27) in histone H3 are homologous to those determined for other organisms, but an additional minor site (lysine 4) occurs in histone H3. As described for calf thymus, both histones H3 and H4 contain epsilon-N-mono- and dimethyllysine, while histone H3 contains in addition, epsilon-N-trimethyllysine. The trout-specific histone H6, which accounts for 0.5 to 1.0% of total histone, contains a sequence for residues 3 to 5,-Arg-Lys-Ser-, which is the same as one methylated in histones H3, at lysines 9 and 27. However, histone H6 yields only trace amounts of [3H]methyl incorporation and no detectable methyllysines on amino acid analysis.  相似文献   

12.
Acetylation of histones during spermatogenesis in the rat   总被引:2,自引:0,他引:2  
Acetate was actively incorporated into rat testis histones when testis cells were prepared by the trypsinization technique in the presence of [3H]acetate. The acetylation was enhanced by 10 mm sodium butyrate. Although histones H3 and H4 were the only histones which incorporated high levels of acetate, the testis-specific histones TH2B and TH3 also appeared to incorporate acetate. This was shown by electrophoresis of the histones on polyacrylamide gels containing Triton X-100. Results, obtained from analysis of histones by two-dimensional gel electrophoresis, confirmed a recent report (P. K. Trostle-Weige, M. L. Meistrich, W. A. Brock, K. Nishioka, and J. W. Bremer, (1982) J. Biol. Chem.257, 5560–5567) that TH2A was a testis-specific histone. The results also confirmed the H2A nature of a testis-enriched histone band, previously designated X2. When histones from populations of cells enriched in specific testis cell types, representing various stages of spermatogenesis, were examined, the patterns of acetylation varied dramatically. Very high levels of acetate were incorporated into multiacetylated species of histone H4 from a population of cells enriched in transition stage spermatids (steps 9–12) compared to the levels of acetate incorporated into H4 from round spermatids (steps 1–8) and earlier stages of spermatogenesis, where acetate was incorporated primarily into the monoacetylated species of H4. Thus, a striking correlation exists between the time of hyperacetylation of histone H4 and the time of removal of histones for their replacement by the basic spermatidal transition proteins designated TP, TP2, and TP4. Hyperacetylation of histone H4 may facilitate the removal of the entire histone complement during the protein transition. In any case, it must be an obligatory step in the dramatic process.  相似文献   

13.
S C Elgin  J Schilling  L E Hood 《Biochemistry》1979,18(25):5679-5685
The complete sequence of histone 2B of Drosophila has been determined by using an improved Beckman sequenator. Comparing these data with those previously published by other investigators on the histone 2B of calf [Iwai, K., Hayashi, H., & Ishikawa, K. (1972) J. Biochem. (Tokyo) 72, 357--367], trout [Koostra, A., & Bailey, G. S. (1978) Biochemistry 17, 2504--2510], and Patella (a limpet) [van Helden, P. D., Strickland, W. N., Brandt, W. F., & von Holt, C. (1979) Eur. J. Biochem. 93, 71--78], it is possible to assess the evolutionary stability of this protein. There is little conservation of sequence in the N-terminal portion of the molecule (residues 1--26 numbering according to calf H2B), while the remainder of the protein, which we designate the C-terminal portion, is highly conserved. In the region of 27--125 residues, there are 9 substitutions in the composite data among the 98 positions, 8 of them conservative. These data indicate that very different selective pressures operate on the two different portions of the H2B molecule, implying the existence of two well-defined regions. Studies on the structure of the nucleosome by others have suggested that the C-terminal portion of H2B is involved in histone-histone interactions while the N-terminal portion is a relatively free "tail" binding to DNA. The sequence data indicate that the function of the C-terminal region of H2B requires considerable sequence specificity while that of the N-terminal region does not.  相似文献   

14.
Separation of labelled nuclei by sedimentation velocity at unit gravity (Staput method) was used to study the timing of histone synthesis and replacement by testis-specific basic nuclear protein (TSP) during spermatogenesis in the mouse. Animals were injected (intratesticularly) with 1.25 micronCi per testis 3H-arginine or 2.5 micronCi per testis 3H-lysine, testis nuclei were separated, and the acid extract of each nuclear fraction was analyzed by acrylamide gel electrophoresis. The distribution of labelled histones and TSP in separated nuclei was assessed 2 h after incorporation. Changes in the labelled histone and TSP content of nuclei during subsequent differentiation (1--34 days post-label) was followed in fractions of separated testis cell nuclei and in nuclei of cauda epididymal spermatozoa. Analysis of total histone and (TSP) content indicated quantitative changes during development. Nuclei from primary spermatocytes had relatively larger amounts of histones H1 and H4. Spermatid nuclei showed a relative reduction in histones H1 and H4, coincident with the appearance of TSP in these nuclei. These results suggested that synthesis and/or removal of certain histones must occur in late primary spermatocyte and early spermatid stages of spermatogenesis. Results of labelling experiments indicated several periods of histone synthesis during spermatogenesis: (1) closely associated with the last DNA synthesis(i.e., in early primary spermatocytes), (2) late in meiotic prophase (i.e., in pachytene primary spermatocytes) and (3) simultaneous with TSP synthesis (i.e., in late spermatids). Histone H1 was more heavily labelled toward the end of the primary spermatocyte period. Histone H4 was more heavily labelled in the early primary spermatocyte period, and again at the time of TSP synthesis in spermatids. Histones synthesized before the pachytene primary spermatocyte stage appeared to be replace, but histones synthesized later in spermatogenesis appeared to be at least partially retained in epididymal spermatozoa. These results suggested that repeated specific alterations in the protein complement of the nucleus are an integral part of spermatogenic differentiation in the mouse.  相似文献   

15.
16.
17.
We have utilized the H2a-specific protease as a unique probe to investigate the nature of the interactions between the protein subunits which form the core histone octamer. Upon incubation in high ionic strength media this protease, normally found tightly associated with isolated calf thymus chromatin, releases the 15 COOH-terminal amino acids of histone H2a by specifically cleaving the H2a polypeptide between Val114 and Leu115, yielding cleaved H2a (cH2a) and a free pentadecapeptide (Eickbush, T. H., Watson, D. K., and Moudrianakis, E. N. (1976) Cell 9, 785-792). We find that removal of this pentadecapeptide results in a marked dissociation of the octamer into its H2a:H2b dimer and H3:H4 tetramer subunits. Reconstitution experiments indicate that cH2a is capable of forming a dimer with H2b, but this cH2a:H2b dimer has a substantially lower affinity for the H3:H4 tetramer than native H2a:H2b dimer. Kinetic studies of H2a cleavage in high ionic strength solutions demonstrate that H2a molecules in the octamer are relatively resistant to proteolytic attack compared to H2a molecules in the dimer. The extent of this resistance, in response to various experimental parameters, is directly correlated to the strength of interaction between the H2a:H2b dimer and H3:H4 tetramer subunits. These reconstitution and kinetic experiments suggest that the histone domains proximal to the H2a cleavage site have an important function in maintaining the association of the histone octamer subunits.  相似文献   

18.
Properties of chromatin subunits from developing trout testis.   总被引:5,自引:0,他引:5  
When a sample of trout testis nuclei is digested with micrococcal nuclease, the DNA is cleaved almost entirely to discrete fragments approximately 200 base pairs long and multiples thereof. The same DNA fragments can be obtained when isolated chromatin, as opposed to intact nuclei, is nuclease digested. These DNA fragments can also be found in discrete chromatin "subunits" isolated from nuclease-digested nuclei. Sedimentation through sucrose gradients or velocity sedimentation in an analytical ultracentrifuge separates these chromatin subunits into 11 S (monomer), 16 S (dimer), and 22 S (trimer) etc. species. Subunits can also be fractionated on a Sepharose 2B column equilibrated and run in low salt. High salt (greater than 40 mM NaCl) or divalent cations (congruent to 5 mM) cause subunit precipitation. Chromatin subunits have a protein to DNA ratio of approximately 1.2 and contain all the histones, including the trout-specific histone T. There are, however, no detectable nonhistone chromosomal proteins. Mg-2+ precipitates of the 11 S chromatin monomers, when pelleted, are thin and clear, while oligomer Mg-2+ pellets are thick and white. This could reflect a more symmetrical or ordered packing of 11 S monomers, which are deficient in histone I. This histone may cross-link the larger oligomers, resulting in a disordered Mg-2+ complex. These results are consistent with the subunit model of chromatin structure, based on 200 base pair long regions of DNA associated with histones. These subunits would be separated by nuclease-sensitive DNA spacer regions and cross-linked by histone I.  相似文献   

19.
20.
Structure of polyubiquitinated histone H2A   总被引:6,自引:0,他引:6  
B E Nickel  J R Davie 《Biochemistry》1989,28(3):964-968
We have recently demonstrated that trout liver histones H2A, H2B, and H2A.Z can be polyubiquitinated [Davie, J.R., Delcuve, G.P., Nickel, B.E., Moyer, R., & Bailey, G. (1987) Cancer Res. 47, 5407-5410]. In the present study we determined the arrangement of the ubiquitin molecules in polyubiquitinated histone H2A. Trout liver chromatin fragments. which had histone H1 removed, were digested with Staphylococcus aureus (V8 strain) protease which cleaves specifically on the carboxyl side of glutamic acid residues under the conditions used. The V8 protease readily degraded histone H2A and ubiquitinated (u) H2A at equivalent rates. One site in H2A and uH2A, the peptide bond between Glu 121 and Lys 122, was cleaved, yielding protein species cH2A and cuH2A, respectively. None of the other nucleosomal histones (H2B, H2A.Z, H3, and H4) including uH2B and uH2A.Z were sensitive to digestion. Trout liver histones cleaved with either V8 protease, histone H2A specific protease, or cyanogen bromide were resolved by two-dimensional gel electrophoresis and ubiquitinated peptides detected with anti-ubiquitin IgG. The results suggest that the major arrangement of ubiquitin in polyubiquitinated H2A is a chain of ubiquitin molecules joined to each other by isopeptide bonds to a ubiquitin molecule that is attached to the epsilon-amino group of lysine 119 of histone H2A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号