首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R D Balczon  B R Brinkley 《Biochemistry》1989,28(21):8490-8496
A photoaffinity label for the identification of tubulin-binding proteins was synthesized from phosphocellulose-purified bovine brain tubulin and (N-hydroxysuccinimidyl)-4-azidosalicylic acid. The azidotubulin derivative retained the ability to undergo temperature-dependent microtubule assembly and disassembly. When incubated with purified tau protein, the azidotubulin and tau formed cross-linked complexes upon photoactivation. When 125I-labeled azidotubulin was used to photoaffinity label tubulin-binding proteins within the kinetochore of isolated mammalian chromosomes, a 130-kDa band was identified on autoradiographs of SDS-polyacrylamide gels of the 125I-labeled azidotubulin/chromosome preparations. The 130-kDa complex was isolated by antitubulin affinity chromatography and analyzed by immunoblotting using both antitubulin and kinetochore-specific sera obtained from human patients with the autoimmune disease scleroderma CREST. The immunoblots demonstrated that the 130-kDa band that was observed on autoradiographs was a complex of a subunit of the tubulin dimer and an 80-kDa CREST-specific kinetochore protein. The binding of azidotubulin to the 80-kDa kinetochore protein was significantly decreased when chromosomes were treated with a mixture of 9 parts underivatized tubulin to 1 part azidotubulin prior to photolysis. The formation of the 130-kDa azidotubulin/kinetochore protein complex was not inhibited by pretreating the chromosomes with CREST serum prior to incubation with azidotubulin. Azidotubulin should be a useful probe for the identification and characterization of tubulin-binding proteins.  相似文献   

2.
Abstract: The heat-shock protein 90 (HSP90) from tobacco VBIO cells specifically binds to nitrocellulose that had been coated with polymerized microtubules or tubulin dimers. HSP90 is expressed preferentially during cell division and becomes down-regulated during cell elongation. HSP90 cofractionates with tubulin dimers during affinity chromatography with sepharose coupled to the tubulin-binding drug ethyl N-phenylcarbamate (EPC). Binding of HSP90 to EPC-sepharose depends on the presence of tubulin. Antibodies against tubulin and HSP90 immunoadsorb HSP90 and tubulin, respectively. These results demonstrate that HSP90 behaves as a microtubule-binding protein in vitro.  相似文献   

3.
We describe the interaction of pure brain tubulin with purified membranes specialized in different cell functions, i.e., plasma membranes and mitochondrial membranes from liver and secretory granule membranes from adrenal medulla. We studied the tubulin-binding activity of cellular membranes using a radiolabeled ligand-receptor assay and an antibody retention assay. The tubulin-membrane interaction was time- and temperature-dependent, reversible, specific, and saturable. The binding of tubulin to membranes appears to be specific since acidic proteins such as serum albumin or actin did not interfere in the binding process. The apparent overall affinity constant of the tubulin- membrane interaction ranged between 1.5 and 3.0 X 10(7) M-1; similar values were obtained for the three types of membranes. Tubulin bound to membranes was not entrapped into vesicles since it reacted quantitatively with antitubulin antibodies. At saturation of the tubulin-binding sites, the amount of reversibly bound tubulin represents 5-10% by weight of membrane protein (0.4-0.9 nmol tubulin/mg membrane protein). The high tubulin-binding capacity of membranes seems to be inconsistent with a 1:1 stoichiometry between tubulin and a membrane component but could be relevant to a kind of tubulin assembly. Indeed, tubulin-membrane interaction had some properties in common with microtubule formation: (a) the association of tubulin to membranes increased with the temperature, whereas the dissociation of tubulin- membrane complexes increased by decreasing temperature; (b) the binding of tubulin to membranes was prevented by phosphate buffer. However, the tubulin-membrane interaction differed from tubulin polymerization in several aspects: (a) it occurred at concentrations far below the critical concentration for polymerization; (b) it was not inhibited at low ionic strength and (c) it was colchicine-insensitive. Plasma membranes, mitochondrial membranes, and secretory granule membranes contained tubulin as an integral component. This was demonstrated on intact membrane and on Nonidet P-40 solubilized membrane protein using antitubulin antibodies in antibody retention and radioimmune assays. Membrane tubulin content varied from 2.2 to 4.4 micrograms/mg protein. The involvement of membrane tubulin in tubulin-membrane interactions remains questionable since erythrocyte membranes devoid of membrane tubulin exhibited a low (one-tenth of that of rat liver plasma membranes) but significant tubulin-binding activity. These results show that membranes specialized in different cell functions possess high- affinity, large-capacity tubulin-binding sites...  相似文献   

4.
G Bollag  F McCormick    R Clark 《The EMBO journal》1993,12(5):1923-1927
Full-length neurofibromin is a GTPase activating protein (GAP) for the Ras proto-oncogene product. Regulation of neurofibromin activity therefore has important implications for cell growth. Neurofibromin co-purifies with tubulin when expressed in insect cells. The interaction between neurofibromin and tubulin is sensitive to the microtubule depolymerizing agent colchicine. Neurofibromin GAP activity is inhibited even at low concentrations of tubulin. However, maximal inhibition of GAP activity is only approximately 70%, suggesting that the neurofibromin-tubulin complex retains residual GAP activity. This decreased activity is reflected by a 4-fold decrease in its affinity for Ras. A truncated mutant of neurofibromin with reduced sensitivity to tubulin localizes some tubulin-binding determinants to an 80 residue segment immediately N-terminal to the GAP-related domain. Since tubulin is an abundant protein in eukaryotic cells, the tubulin-neurofibromin interaction may regulate the Ras signalling pathway.  相似文献   

5.
The cytoplasmic loop between the second and third transmembrane segments is pivotal in the regulation of TRESK (TWIK-related spinal cord K+ channel, K2P18.1, KCNK18). Calcineurin binds to this region and activates the channel by dephosphorylation in response to the calcium signal. Phosphorylation-dependent anchorage of 14-3-3 adaptor protein also modulates TRESK at this location. In the present study, we identified molecular interacting partners of the intracellular loop. By an affinity chromatography approach using the cytoplasmic loop as bait, we have verified the specific association of calcineurin and 14-3-3 to the channel. In addition to these known interacting proteins, we observed substantial binding of tubulin to the intracellular loop. Successive truncation of the polypeptide and pull-down experiments from mouse brain cytosol narrowed down the region sufficient for the binding of tubulin to a 16 amino acid sequence: LVLGRLSYSIISNLDE. The first six residues of this sequence are similar to the previously reported tubulin-binding region of P2X2 purinergic receptor. The tubulin-binding site of TRESK is located close to the protein kinase A (PKA)-dependent 14-3-3-docking motif of the channel. We provide experimental evidence suggesting that 14-3-3 competes with tubulin for the binding to the cytoplasmic loop of TRESK. It is intriguing that the 16 amino acid tubulin-binding sequence includes the serines, which were previously shown to be phosphorylated by microtubule-affinity regulating kinases (MARK kinases) and contribute to channel inhibition. Although tubulin binds to TRESK in vitro, it remains to be established whether the two proteins also interact in the living cell.  相似文献   

6.
Estramustine phosphate, an estradiol nitrogen-mustard derivative is a microtubule-associated protein (MAP)-binding microtubule inhibitor, used in the therapy of prostatic carcinoma. It was found to inhibit assembly and to induce disassembly of microtubules reconstituted from phosphocellulose-purified tubulin with either tau, microtubule-associated protein 2, or chymotrypsin-digested microtubule-associated protein 2. Estramustine phosphate also inhibited assembly of trypsin-treated microtubules, completely depleted of high-molecular-weight microtubule-associated proteins, but with their microtubule-binding fragment present. In all cases estramustine phosphate induced disassembly to about 50%, at a concentration of approximately 100 microM, at similar protein concentrations. However, estramustine phosphate did not affect dimethyl sulfoxide-induced assembly of phosphocellulose-purified tubulin. Estramustine phosphate is a reversible inhibitor, as the nonionic detergent Triton X-100 was found to counteract the inhibition in a concentration-dependent manner. The reversibility was nondisruptive, as Triton X-100 itself did not affect microtubule assembly, microtubule protein composition, or morphology. This new reversible MAPs-dependent inhibitor estramustine phosphate affects the tubulin assembly, induced by tau, as well as by the small tubulin-binding part of MAP2 with the same concentration dependency. This indicates that tau and the tubulin-binding part of MAP2, in addition to their assembly promoting functions also have binding site(s) for estramustine phosphate in common.  相似文献   

7.
Interaction between metabotropic glutamate receptor 7 and alpha tubulin   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) mediate a variety of responses to glutamate in the central nervous system. A primary role for group-III mGluRs is to inhibit neurotransmitter release from presynaptic terminals, but the molecular mechanisms that regulate presynaptic trafficking and activity of group-III mGluRs are not well understood. Here, we describe the interaction of mGluR7, a group-III mGluR and presynaptic autoreceptor, with the cytoskeletal protein, alpha tubulin. The mGluR7 carboxy terminal (CT) region was expressed as a GST fusion protein and incubated with rat brain extract to purify potential mGluR7-interacting proteins. These studies yielded a single prominent mGluR7 CT-associated protein of 55 kDa, which subsequent microsequencing analysis revealed to be alpha tubulin. Coimmunoprecipitation assays confirmed that full-length mGluR7 and alpha tubulin interact in rat brain as well as in BHK cells stably expressing mGluR7a, a splice variant of mGluR7. In addition, protein overlay experiments showed that the CT domain of mGluR7a binds specifically to purified tubulin and calmodulin, but not to bovine serum albumin. Further pull-down studies revealed that another splice variant mGluR7b also interacts with alpha tubulin, indicating that the binding region is not localized to the splice-variant regions of either mGluR7a (900-915) or mGluR7b (900-923). Indeed, deletion mutagenesis experiments revealed that the alpha tubulin-binding site is located within amino acids 873-892 of the mGluR7 CT domain, a region known to be important for regulation of mGluR7 trafficking. Interestingly, activation of mGluR7a in cells results in an immediate and significant decrease in alpha tubulin binding. These data suggest that the mGluR7/alpha tubulin interaction may provide a mechanism to control access of the CT domain to regulatory molecules, or alternatively, that this interaction may lead to morphological changes in the presynaptic membrane in response to receptor activation.  相似文献   

8.
S Kotani  G Kawai  S Yokoyama  H Murofushi 《Biochemistry》1990,29(43):10049-10054
An amino acid sequence essential for microtubule-associated proteins (MAPs) to bind to microtubules is presented [Aizawa et al. (1989) J. Biol. Chem. 264, 5885-5890]. A synthetic peptide of 23 amino acid residues which corresponded to the sequence [tubulin binding peptide (TBP)] was active in binding to tubulin and inducing its assembly. The TBP-tubulin interaction mechanism was analyzed by proton nuclear magnetic resonance spectroscopy as a simplified model for MAP-microtubule interactions. Intraresidue transferred nuclear Overhauser effects (TRNOEs) of TBP in TBP-tubulin mixtures were analyzed, and strong binding of two Val and two Lys residues of TBP to tubulin was detected. Among the sharply peaked signals from tubulin aromatic residues, those due to Tyr ring protons broadened upon mixing with TBP, suggesting the involvement of Tyr residue(s) in the binding with TBP. Irradiation of the tubulin Tyr protons resulted in an intermolecular TRNOE at TBP methyl proton resonances. Evidently, hydrophobic interactions between Val and Tyr residues are important for the binding of TBP to tubulin. Hydrophobic interactions have not been taken into account previously in the widely accepted electrostatic model for the binding of MAPs to microtubules.  相似文献   

9.
10.
The microtubule cytoskeleton consists of a highly organized network of microtubule polymers bound to their accessory proteins: microtubule-associated proteins, molecular motors, and microtubule-organizing proteins. The microtubule subunits are heterodimers composed of one alpha-tubulin polypeptide and one beta-tubulin polypeptide that should undergo a complex folding processing before they achieve a quaternary structure that will allow their incorporation into the polymer. Due to the extremely high protein concentration that exists at the cell cytoplasm, there are alpha- and beta-tubulin interacting proteins that prevent the unwanted interaction of these polypeptides with the surrounding protein pool during folding, thus allowing microtubule dynamics. Several years ago, the development of a nondenaturing electrophoretic technique made it possible to identify different tubulin intermediate complexes during tubulin biogenesis in vitro. By these means, the cytosolic chaperonin containing TCP-1 (CCT or TriC) and prefoldin have been demonstrated to intervene through tubulin and actin folding. Various other cofactors also identified along the alpha- and beta-tubulin postchaperonin folding route are now known to have additional roles in tubulin biogenesis such as participating in the synthesis, transport, and storage of alpha- and beta-tubulin. The future characterization of the tubulin-binding sites to these proteins, and perhaps other still unknown proteins, will help in the development of chemicals that could interfere with tubulin folding and thus modulating microtubule dynamics. In this paper, current knowledge of the above postchaperonin folding cofactors, which are in fact chaperones involved in tubulin heterodimer quaternary structure achievement, will be reviewed.  相似文献   

11.
Microtubules play an essential role in the growth and development of plants and are known to be involved in regulating many cellular processes ranging from translation to signaling. In this article, we describe the proteomic characterization of Arabidopsis tubulin-binding proteins that were purified using tubulin affinity chromatography. Microtubule co-sedimentation assays indicated that most, if not all, of the proteins in the tubulin-binding protein fraction possessed microtubule-binding activity. Two-dimensional gel electrophoresis of the tubulin-binding protein fraction was performed, and 86 protein spots were excised and analyzed for protein identification. A total of 122 proteins were identified with high confidence using LC-MS/MS. These proteins were grouped into six categories based on their predicted functions: microtubule-associated proteins, translation factors, RNA-binding proteins, signaling proteins, metabolic enzymes, and proteins with other functions. Almost one-half of the proteins identified in this fraction were related to proteins that have previously been reported to interact with microtubules. This study represents the first large-scale proteomic identification of eukaryotic cytoskeleton-binding proteins, and provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells.  相似文献   

12.
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.  相似文献   

13.
Abstract: Glycated residues of τ protein from paired helical filaments isolated from the brains of Alzheimer's disease patients were localized by doing a proteolytic cleavage of the protein, fractionation of the resulting peptides, and identification of those peptides using specific antibodies. The most suitable residues for glycation, lysines, present at the tubulin-binding motif of τ protein, seem to be preferentially modified compared with those lysines present at other regions. Among these modified lysines, those located in the sequence comprising residues 318–336 (in the largest human τ isoform) were found to be glycated, as determined by the reaction with an antibody that recognizes a glycated peptide containing this sequence. Because those lysines are present in a tubulin binding motif of τ protein, its modification could result in a decrease in the interaction of τ with tubulin.  相似文献   

14.
We have analyzed the in vitro phosphorylation of tau protein by Ca2+/calmodulin-dependent protein kinase, casein kinase II, and proline-directed serine/threonine protein kinase. These kinases phosphorylate tau protein in sites localized in different regions of the molecule, as determined by peptide mapping analyses. Focusing on the phosphorylation of tau by protein kinase C, it was calculated as an incorporation of 4 mol of phosphate/mol of tau. Limited proteolysis assays suggest that the phosphorylation sites could be located within the tubulin-binding domain. Direct phosphorylation of synthetic peptides corresponding to the cysteine-containing tubulin-binding region present in both fetal and adult tau isoforms demonstrates that serine 313 is modified by protein kinase C. Phosphorylation of the synthetic peptide by protein kinase C diminishes its binding to tubulin, as compared with the unphosphorylated peptide.  相似文献   

15.
The concentration of estramustine phosphate required to inhibit the assembly or to induce the disassembly of chick brain MAP2:tubulin microtubules is markedly dependent upon the microtubule protein concentration. Analysis of this relationship shows that estramustine phosphate and tubulin compete for common MAP2 sites, that MAP2 can bind 5-6 moles.mole-1 estramustine phosphate, and that the Kd of these sites is congruent to 20 microM estramustine phosphate. It is proposed that two molecules of estramustine phosphate interact with each of the three tubulin-binding sites of MAP2 and inhibit the MAP2:tubulin interaction by neutralising two highly conserved basic residues.  相似文献   

16.
Oncoprotein 18/stathmin (stathmin) is a phosphorylation-controlled key regulator of microtubule dynamics. In recent years, substantial efforts were undertaken to characterize the complex formed between tubulin and the intrinsically disordered stathmin molecule. Here, I summarize and illustrate the current structural and thermodynamic studies on the tubulin-stathmin interaction. Based on these and on functional information I formulate an updated molecular mechanism on how tubulin-binding by stathmin regulates microtubule dynamics.  相似文献   

17.
p25alpha is a 219-residue protein which stimulates aberrant tubulin polymerization and is implicated in a variety of other functions. The protein has unusual secondary structure involving significant amounts of random coil, and binding to microtubules is accompanied by a large structural change, suggesting a high degree of plasticity. p25alpha has been proposed to be natively unfolded, so that folding is coupled to interaction with its physiological partners. Here we show that recombinant human p25alpha is folded under physiological conditions, since it has a well structured and solvent-sequestered aromatic environment and considerable chemical shift dispersion of amide and aliphatic protons. With increasing urea concentrations, p25alpha undergoes clear spectral changes suggesting significant loss of structure. p25alpha unfolds cooperatively in urea according to a simple two-state transition with a stability in water of approximately 5 kcal/mol. The protein behaves as a monomer and refolds with a transient on-pathway folding intermediate. However, high sensitivity to proteolytic attack and abnormal gel filtration migration behavior suggests a relatively extended structure, possibly organized in distinct domains. A deletion mutant of p25alpha lacking residues 3-43 also unfolds cooperatively and with similar stability, suggesting that the N-terminal region is largely unstructured. Both proteins undergo significant loss of structure when bound to monomeric tubulin. The stoichiometry of binding is estimated to be 3-4 molecules of tubulin per p25alpha and is not significantly affected by the deletion of residues 3-43. In conclusion, we dismiss the proposal that p25alpha is natively unfolded, although the protein is relatively flexible. This flexibility may be linked to its tubulin-binding properties.  相似文献   

18.
The stoichiometry of the dimer between microtubule-associated protein 2 (MAP2) and tubulin has been determined by quantitative dodecylsulphate/polyacrylamide gel electrophoresis to be 1:12 mol X mol-1, a value equal to the number of phosphorylation sites that can be labelled in vitro. The distribution of these sites along the MAP2 primary sequence has been determined by cleaving pre-labelled MAP2 with either alpha-chymotrypsin or at the five cysteine residues with nitrothiocyanobenzoic acid. The phosphorylation sites lie in two clusters: ten within the known tubulin-binding domain at one end of the primary sequence, and a pair midway along the sequence. It is postulated that the tertiary structure of MAP2 is folded to bring all twelve sites into association with the twelve tubulin dimers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号