首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uracil-DNA glycosylase in insects. Drosophila and the locust   总被引:3,自引:0,他引:3  
It has been reported that Drosophila lacks a uracil-DNA glycosylase but that a direct incising activity on uracil-containing DNA appeared developmentally only in third instar larvae. In contrast we have found by two independent assays, that uracil-DNA glycosylase exists in both Drosophila eggs as well as in third instar larvae. The first assay shows the liberation of [3H] uracil from a d(AT)n polymer randomly substituted with [3H]uracil by its synthesis in the presence of [3H] dUTP. The second fluorometric assay for uracil-DNA glycosylase depends on the unique topological properties of circular DNAs and has the advantage of detecting apyrimidinic/apurinic (AP) endonuclease activity as well. To test one other insect, locust eggs were also assayed for uracil-DNA glycosylase. The amount of uracil-DNA glycosylase correlated well with the amount of DNA in actively replicating cells.  相似文献   

2.
In view of removing lesions in DNA produced by the deamination of cytosine to uracil, uracil-DNA glycosylases were anticipated to be ubiquitous. However, an analogous activity in Drosophila melanogaster was not detected. Instead, a nuclease was identified that acts specifically upon DNA containing uracil. The cleavage of uracil-containing DNA by the nuclease generates acid-soluble oligonucleotides in a reaction which can be inhibited by pretreatment of the DNA with Escherichia coli uracil-DNA glycosylase. Uracil-containing DNA with either A:U base pairs or G:U base pairs were susceptible to cleavage by the nuclease, whereas other damaged DNA substrates were not. The nuclease activity is transient and appears only in third instar larvae, with other developmental stages of Drosophila lacking significant levels of the nuclease.  相似文献   

3.
DNA methyltransferase activity has been identified in crude extracts of Drosophila melanogaster pupae for the removal of methyl groups from O-6 methylguanine appearing in alkylated DNA. Additionally, N-7 methylguanine and 3 methyladenine appear to be uniquely susceptible to methyltransferase activity that resides in Drosophila pupae. Consistent with this, tests to detect DNA glycosylase activity for the repair of the latter two modified bases was unsuccessful, even though a substantial loss of methyl groups from these bases was observed. Conversely, the repair of methylated purines was not detected in extracts of Drosophila embryos. The removal of methyl groups from methylated purines was dependent upon incubation temperature and was proportional to the amount of protein added to reaction mixtures. Results indicate that the methyl group is attached to protein during the repair of methylated DNA, suggesting that it is similar to the O6-methylguanine-DNA methyltransferase identified in other organisms. Although other explanations are possible, the inability to detect DNA glycosylase activity suggests that Drosophila may not rely on base excision repair for the removal of modified or nonconventional basis in DNA.  相似文献   

4.
5-Hydroxymethyluracil (HmUra) is formed in DNA as a product of oxidative attack on the methyl group of thymine. It is also the product of the deamination of 5-hydroxymethylcytosine (HmCyt) which may be formed via oxidation of 5-methylcytosine (MeCyt). HmUra is removed from DNA by a DNA glycosylase which, together with HmCyt-DNA glycosylase, is unique among DNA repair enzymes in being present in mammalian cells but absent from bacteria and yeast. We found HmUra-DNA glycosylase activity in a wide variety of vertebrate and invertebrate animals (except Drosophila) and in protozoans. In most vertebrate organisms the highest specific activity was in nervous and immune system tissue. The phylogenetic distribution of HmUra-DNA glycosylase correlates with the presence of 5-methylcytosine (MeCyt) as a regulator of gene expression. This distribution of activity supports the contention that HmUra-DNA glycosylase aids in the maintenance of methylated sites in DNA.  相似文献   

5.
Five peaks of DNA glycosylase activity showing a preference for MNNG alkylated DNA have been identified from extracts of adapted M. luteus. They are numerically designated as GI to GV in order of their decreasing molecular weights. The first two of these peaks have been highly purified. GI, is a constitutive heat labile protein, 35% stimulated by the presence of 50 mM NaCl, acts exclusively on 3 MeA residues in alkylated DNA, 60-70% inhibited by the presence of 2 mM free 3MeA and has been designated as 3MeA DNA glycosylase enzyme. GII, which is an inducible protein, is heat stable, 28% inhibited by the presence of 50 mM NaCl, removes 3MeA, 3MeG, 7MeA & 7MeG with different efficiency, and has been designated as 3,7 methylpurine DNA glycosylase enzyme. The rate of release of 3 methylpurines is 30 times that of 7MeG. There is no activity of either enzyme on O2-MeC, O2-MeT, O4-MeT or O6-MeG. The apparent molecular weights of GI and GII proteins are 28 Kd and 22 Kd respectively.  相似文献   

6.
Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil-DNA glycosylase and dUTPase. Lack of the major uracil-DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200-2,000 uracil/million bases, quantified using a novel real-time PCR-based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil-DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil-DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil-DNA in this evolutionary clade.  相似文献   

7.
DNA mimic proteins are unique factors that control the DNA binding activity of target proteins by directly occupying their DNA binding sites. The extremely divergent amino acid sequences of the DNA mimics make these proteins hard to predict, and although they are likely to be ubiquitous, to date, only a few have been reported and functionally analyzed. Here we used a bioinformatic approach to look for potential DNA mimic proteins among previously reported protein structures. From ∼14 candidates, we selected the Staphylococcus conserved hypothetical protein SSP0047, and used proteomic and structural approaches to show that it is a novel DNA mimic protein. In Staphylococcus aureus, we found that this protein acts as a uracil-DNA glycosylase inhibitor, and therefore named it S. aureus uracil-DNA glycosylase inhibitor (SAUGI). We also determined and analyzed the complex structure of SAUGI and S. aureus uracil-DNA glycosylase (SAUDG). Subsequent BIAcore studies further showed that SAUGI has a high binding affinity to both S. aureus and human UDG. The two uracil-DNA glycosylase inhibitors (UGI and p56) previously known to science were both found in Bacillus phages, and this is the first report of a bacterial DNA mimic that may regulate SAUDG’s functional roles in DNA repair and host defense.  相似文献   

8.
DNA integrity is under the control of multiple pathways of nucleotide metabolism and DNA damage recognition and repair. Unusual sets of protein factors involved in these control mechanisms may result in tolerance and accumulation of non-canonical bases within the DNA. We investigate the presence of uracil in genomic DNA of Drosophila melanogaster. Results indicate a developmental pattern and strong correlations between uracil-DNA levels, dUTPase expression and developmental fate of different tissues. The intriguing lack of the catalytically most efficient uracil-DNA glycosylase in Drosophila melanogaster may be a general attribute of Holometabola and is suggested to be involved in the specific characteristics of uracil-DNA metabolism in these insects.  相似文献   

9.
The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a beta-elimination reaction that cleaves phosphodiester bonds 3' and adjacent to an AP lesion in DNA. In certain situations, this is followed by a delta-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5'- and 3'-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a beta-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a delta-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the delta-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophila wild-type S3 and its ability to protect a bacterial mutant from the harmful effects of DNA-damaging agents.  相似文献   

10.
A thermostable 8-oxoguanine (oxoG) DNA glycosylase from Methanococcus jannaschii has been expressed in Escherichia coli, purified, and characterized. The enzyme, which has been named mjOgg, belongs to the same diverse DNA glycosylase superfamily as the 8-oxoguanine DNA glycosylases from yeast (yOgg1) and human (hOgg1) but is substantially different in sequence. In addition, unlike its eukaryotic counterparts, which have a strong preference for oxoG.C base pairs, mjOgg has little specificity for the base opposite oxoG. mjOgg has both DNA glycosylase and DNA lyase (beta-elimination) activity, and the combined glycosylase/lyase activity occurs at a rate comparable with the glycosylase activity alone. Mutation of Lys-129, analogous to Lys-241 of yOgg1, abolishes glycosylase activity.  相似文献   

11.
Dong L  Meira LB  Hazra TK  Samson LD  Cao W 《DNA Repair》2008,7(1):128-134
DNA bases carrying an exocyclic amino group, namely adenine (A), guanine (G) and cytosine (C), encounter deamination under nitrosative stress. Oxanine (O), derived from deamination of guanine, is a cytotoxic and potentially mutagenic lesion and studies of its enzymatic repair are limited. Previously, we reported that the murine alkyladenine glycosylase (Aag) acts as an oxanine DNA glycosylase (JBC (2004), 279: 38177). Here, we report our recent findings on additional oxanine DNA glycosylase (ODG) activities in Aag knockout mouse tissues and other mammalian tissues. Analysis of the partially purified proteins from the mammalian cell extracts indicated the existence of ODG enzymes in addition to Aag. Data obtained from oxanine DNA cleavage assays using purified human glycosylases demonstrated that two known glycosylases, hNEIL1 and hSMUG1, contained weak but detectable ODG activities. ODG activity was the highest in hAAG and lowest in hSMUG1.  相似文献   

12.
A repair system for 8-oxo-7,8-dihydrodeoxyguanine.   总被引:34,自引:0,他引:34  
Active oxygen species can damage DNA and may play a role in aging and carcinogenesis. We have tested MutY glycosylase for activity on undamaged mispairs as well as mispairs formed with the oxidatively damaged substrates, 8-oxo-7,8-dihydrodeoxyguanine (GO) or 8-oxo-7,8-dihydrodeoxyadenine (AO). MutY acts as a glycosylase on four of the heteroduplexes tested, A/G, A/GO, A/C, and A/AO, removing the undamaged adenine from each substrate. Genetic data suggest that the primary substrate for MutY glycosylase in vivo is the A/GO mispair. We present biochemical evidence demonstrating that MutY glycosylase is an important part of a repair system that includes the MutM and MutT proteins. The GO repair system is dedicated to the repair of the oxidatively damaged guanine and the mutations it can induce.  相似文献   

13.
An inducible methyltransferase of Escherichia coli acts on O6-methylguanine in DNA by conveying the methyl group to one of its own cysteine residues. The protein has now been purified to apparent homogeneity from a constitutively expressing strain. The homogeneous methyltransferase exhibits no DNA glycosylase or endonuclease activity on alkylated DNA. Further, the methyltransferase activity is strikingly resistant to heat inactivation under reducing conditions. The protein has Mr = 18,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient and Stokes radius of the native enzyme yield Mr = 18,400. The amino acid composition of the purified protein shows 4 to 5 cysteine residues/transferase molecule. The methylated, inactive form of the transferase has an unaltered molecular weight.  相似文献   

14.
5-Hydroxymethyluracil (HmUra) residues formed by the oxidation of thymine are removed from DNA through the action of a DNA glycosylase activity. This activity was purified over 1870-fold from calf thymus and found to be distinct from uracil (Ura)-DNA glycosylase. The HmUra-DNA glycosylase has a molecular weight of 38,000, a pH optimum of 6.7-6.8 and an apparent Km of 0.73 +/- 0.04 microM. These values are similar to those reported for other mammalian DNA glycosylases. The enzyme removed HmUra residues from single- and double-stranded DNA with almost equal efficiency. HmUra-DNA glycosylase activity was not product inhibited by free HmUra. The DNA glycosylase activity was inhibited by Mg2+, but the purest enzyme fractions contained a Mg2+-dependent apurinic/apyrimidinic endonuclease activity. HmUra-DNA glycosylase and the recently described 5-hydroxymethylcytosine (HmCyt)-DNA glycosylase (Cannon, S. V., Cummings, A. C., and Teebor, G. W. (1988) Biochem. Biophys. Res. Commun. 151, 1173-1179) are unique among known DNA glycosylases in being present in mammalian cells and absent from bacteria. These DNA glycosylase activities were shown here to reside on different proteins. We suggest that the major function of HmUra-DNA glycosylase, together with HmCyt-DNA glycosylase, is the maintenance of methylated cytosine residues in the DNA of higher organisms.  相似文献   

15.
A DNA glycosylase that excises, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) from double stranded DNA has been purified 28,570-fold from the yeast Saccharomyces cerevisiae. Gel filtration chromatography shows that yeast Fapy DNA glycosylase has a molecular weight of about 40 kDa. The Fapy DNA glycosylase is active in the presence of EDTA, but is completely inhibited by 0.2 M KCl. Yeast Fapy DNA glycosylase does not excise N7-methylguanine, N3-methyladenine or uracil. A repair enzyme for 7,8-dihydro-8-oxoguanine (8-OxoG) co-purifies with the Fapy DNA glycosylase. This repair activity causes strand cleavage at the site of 8-OxoG in DNA duplexes. The highest rate of incision of the 8-OxoG-containing strand was observed for duplexes where 8-OxoG was opposite guanine. The mode of incision at 8-OxoG was not established yet. The results however suggest that the Fapy- and 8-OxoG-repair activities are associated with a single protein.  相似文献   

16.
The enzyme 3-methyladenine DNA glycosylase II (AlkA) is a bacterial repair enzyme that acts preferentially at 3-methyladenine residues in DNA, releasing the damaged base. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay (single cell gel electrophoresis) they appear as DNA strand breaks. AlkA is no t lesion-specific, but has a low activity even w ith undamagedbases. We have tested the enzyme at different concentrations to find conditions that maximise detection of alkylated bases with minimal attack on normal, undamaged DNA. AlkA detects damage in the DNA of cells treated with low concentrations of methyl methanesulphonate. We also find low background levels of alkylated bases in normal human lymphocytes.  相似文献   

17.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

18.
Nei2 (Rv3297) is a DNA Base Excision Repair (BER) glycosylase that is essential for survival of Mycobacterium tuberculosis in primates. We show that MtbNei2 is a bifunctional glycosylase that specifically acts on oxidized pyrimidine-containing single-stranded, double-stranded, 5’/3’ fork and bubble DNA substrates. MtbNei2 possesses Uracil DNA glycosylase activity unlike E. coli Nei. Mutational studies demonstrate that Pro2 and Glu3 located in the active site are essential for glycosylase activity of MtbNei2. Mutational analysis demonstrated that an unstructured C-terminal zinc finger domain that was important for activity in E. coli Nei and Fpg, was not required for the glycosylase activity of MtbNei2. Lastly, we screened the NCI natural product compound database and identified three natural product inhibitors with IC50 values ranging between 41.8 μM-92.7 μM against MtbNei2 in in vitro inhibition assays. Surface Plasmon Resonance (SPR) experiments showed that the binding affinity of the best inhibitor, NSC31867, was 74 nM. The present results set the stage for exploiting this important target in developing new therapeutic strategies that target Mycobacterial BER.  相似文献   

19.
Cellular DNA is continuously subject to damages by both endogenous and exogenous oxidizing agents. Excision repair in human cells is initiated by DNA glycosylases which remove oxidized bases from DNA. 5-Hydroxymethyluracil-DNA glycosylase excises 5-hydroxymethyluracil from DNA. A different enzyme has glycosylic activity against many ring-saturated DNA pyrimidines. Levels of these enzymes were examined in WI-38 fibroblasts of different culture ages. All glycosylases were assayed by measurements of direct release of modified free bases from their respective DNA substrates. Levels of 5-hydroxymethyluracil-DNA glycosylase were reduced in aging cells. Specific activities of the glycosylase that releases ring-saturated pyrimidines and of uracil-DNA glycosylase were not substantially altered in senescent cells. Therefore, although aging cells might have reduced excision of DNA 5-hydroxymethyluracil, there is no overall age-dependent decrease of DNA glycosylase activities.  相似文献   

20.
Previous findings that the vaccinia virus uracil DNA glycosylase is required for virus DNA replication, coupled with an inability to isolate a mutant with an active site substitution in the glycosylase gene, were surprising, as such enzymes function in DNA repair and bacterial, yeast, and mammalian null mutants are viable. To further study the role of the viral protein, we constructed recombinant vaccinia viruses with single or double mutations (D68N and H181L) in the uracil DNA glycosylase conserved catalytic site by using a complementing cell line that constitutively expresses the viral enzyme. Although these mutations abolished uracil DNA glycosylase activity, they did not prevent viral DNA replication or propagation on a variety of noncomplementing cell lines or human primary skin fibroblasts. In contrast, replication of a uracil DNA glycosylase deletion mutant occurred only in the complementing cell line. Therefore, the uracil DNA glycosylase has an essential role in DNA replication that is independent of its glycosylase activity. Nevertheless, the conservation of the catalytic site in all poxvirus orthologs suggested an important role in vivo. This idea was confirmed by the decreased virulence of catalytic-site mutants when administered by the intranasal route to mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号