首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent.  相似文献   

2.
3.
Osteogenesis is a complex process characterized sequentially by the commitment of precursor cells, the proliferation of osteoprogenitor cells, the differentiation of pre-osteoblasts into mature osteoblasts and the apposition of a calcified bone matrix. Recent advances in cell and molecular biology have improved our knowledge of the cellular and molecular mechanisms controlling the different steps of bone formation in humans. Using ex vivo/in vitro studies of disorders of bone formation, we showed that the recruitment of osteoprogenitor cells is the most important step controlling the rate of bone formation in both rodents and humans. Accordingly, treatments stimulating osteoblast recruitment were found to increase bone formation in experimental models of osteopenic disorders. Using models of human osteoblastic cells, we identified the profile of phenotypic markers expressed during osteoblast differentiation, and found that hormones and growth factors control osteoblastic cell proliferation and differentiation in a sequential and coordinate manner during osteogenesis in vitro. Our recent evaluation of the phenotypic osteoblast abnormalities induced by genetic mutations in the Gs alpha and FGFR-2 genes led to the characterization of the role of these genes in the alterations of osteoblast proliferation and differentiation in humans. These studies at the histological, cellular and molecular levels provided new insight into the mechanisms that are involved in pathological bone formation in humans. It is expected that further determination of the pathogenic pathways in metabolic and genetic abnormalities in human osteoblasts will help to identify novel target genes and to conceive new therapeutic tools to stimulate bone formation in osteopenic disorders.  相似文献   

4.
5.
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways.  相似文献   

6.
AimsRetinoic acid is widely used in dermatological treatment and thyroid cancer management; however its possible side-effects on normal thyroid function remains unknown. We aimed to determine the effects of retinoic acid on thyroid function of adult female rats.Main methodsFemale Wistar rats were treated with all-trans-retinoic acid and 13-cis retinoic acid for 14 and 28 days. Then, rats were killed and thyroid function was evaluated.Key findingsSerum T4 and thyrotropin levels remained unchanged, while serum T3 increased in animals treated with all-trans-retinoic acid for 14 days. No changes were observed in hepatic or renal type 1 iodothyronine deiodinase (D1) activities, while thyroid D1 was higher in animals treated for 14 days with all-trans-retinoic acid, which could be related to the increased serum T3 levels. 13-cis retinoic acid increased thyroid iodide uptake after 28 days. These results show effects of retinoic acid treatment on these thyroid proteins: sodium/iodide symporter and deiodinase.SignificanceRetinoic acid is able to interfere with normal thyroid function, increasing thyroid type 1 deiodinase activity, serum T3 levels and sodium/iodide symporter function. However, the effects are time- and retinoic acid isomer-dependent. Since serum thyrotropin levels did not change in any group, the effects observed are probably mediated by a direct retinoic acid effect on the normal thyroid.  相似文献   

7.
Role of N-cadherin in bone formation   总被引:2,自引:0,他引:2  
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.  相似文献   

8.
Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and l-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.  相似文献   

9.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

10.
11.
Retinoic acid constantly undergoes structural inter-conversions among the geometrical isomers (all-trans-retinoic acid, 9-cis-retinoic acid, 11-cis-retinoic acid, 13-cis-retinoic acid and 9-13-di-cis-retinoic acid) by photoisomerization under natural light. Geometric isomers of retinoic acid thus formed showed different effects on human epidermal keratinocyte growth and differentiation. The ability of the isomers to inhibit the synthesis of cornified envelope (terminal event in the keratinocyte differentiation program) changed rapidly when illuminated by white fluorescent light. The 11-cis-retinoic acid had a 3-fold stronger activity to inhibit the growth of keratinocytes than the other geometric isomers. On the other hand, all-trans-retinoic acid, 9-cis-retinoic acid and 9-13-di-cis-retinoic acid exhibited a 3-fold greater ability to inhibit synthesis of involucrin, transglutaminase and the cornified envelopes. The regulation of keratin expression by the geometric isomers of retinoic acids was extremely complex. Level of keratin-1 (K1) mRNA was increased by 11-cis-retinoic acid and 13-cis-retinoic acid, but suppressed by 9,13-di-cis-retinoic acids while all-trans-retinoic acid and 9-cis-retinoic acid had no effect. Level of keratin-10 (K10) mRNA was strongly inhibited by all-trans-retinoic acid, 9-cis-retinoic acid and 11-cis-retinoic acid as compared to 13-cis-retinoic acid and 9,13-di-cis-retinoic acids. The mRNA level of keratin-14 (K14) was suppressed by all-trans-retinoic acid, 9-cis-retinoic acid and 11-cis-retinoic acid but not influenced by 13-cis-retinoic acid and 9,13-di-cis-retinoic acid. Natural light induced structural inter-conversions among the geometric isomers of retinoic acids in tissues-especially the skin, might play a crucial role in the regulation of growth and differentiation of keratinocytes.  相似文献   

12.
We obtained terminally differentiated chondrocytes in monolayer culture from chick embryonal growth plates, and examined the effect of retinoic acid on these cells. The cells treated with retinoic acid ceased type X collagen synthesis and showed decreased calcium incorporation into cell layers. Retinoic acid tended to stimulate proliferation of the cultured chondrocytes. It also increased DNA accumulation dose-dependently in the range from 1 nM to 1 microM. DNA synthesis in the growth phase and confluency was stimulated within 10 h after addition of 0.1 microM retinoic acid. [3H]Retinoic acid binding, which was inhibited by simultaneous addition of excess unlabeled retinoic acid, was detected in both the cytosolic and nuclear fractions of the chondrocytes. The retinoic acid binding capacity of the nuclear fraction was increased by pretreating the cells with retinoic acid. These results indicate that retinoic acid binds to both the cytosolic and nuclear fractions of cultured chondrocytes, and induces their proliferation and dedifferentiation.  相似文献   

13.
Role of Cbfa1 in osteoblast differentiation and function   总被引:13,自引:0,他引:13  
Among the multiple cell lineages whose differentiation is affected by a runt-related gene the osteoblast is a relative newcomer. Molecular biology, developmental biology and mouse and human genetic studies have demonstrated that Cbfa1 is a critical regulator of osteoblast differentiation in vertebrates. Cbfa1 is not only a differentiation factor but also a regulator of bone formation by differentiated osteoblasts beyond development. Thus, Cbfa1 controls osteogenesis at multiple stages.  相似文献   

14.
15.
16.
17.
Global knockout of the BK channel has been proven to affect bone formation; however, whether it directly affects osteoblast differentiation and the mechanism are elusive. In the current study, we further investigated the role of BK channels in bone development and explored whether BK channels impacted the differentiation and proliferation of osteoblasts via the canonical Wnt signaling pathway. Our findings demonstrated that knockout of Kcnma1 disrupted the osteogenesis of osteoblasts and inhibited the stabilization of β-catenin. Western blot analysis showed that the protein levels of Axin1 and USP7 increased when Kcnma1 was deficient. Together, this study confirmed that BK ablation decreased bone mass via the Wnt/β-catenin signaling pathway. Our findings also showed that USP7 might have the ability to stabilize the activity of Axin1, which would increase the degradation of β-catenin in osteoblasts.  相似文献   

18.
19.
Lithium affects several enzymatic activities, however, the molecular mechanisms of lithium actions are not fully understood. We previously showed that LiCl interacts synergistically with all-trans-retinoic acid to promote terminal differentiation of WEHI-3B D(+) cells, a phenomenon accompanied by the recovery of the retinoid-induced loss of retinoic acid receptor alpha protein pools. Here, we demonstrate the effects of LiCl on proteasome-dependent degradation of retinoic acid receptor alpha proteins. LiCl alone, or in combination with all-trans-retinoic acid, increased cellular levels of ubiquitinated retinoic acid receptor alpha and markedly reduced chymotryptic-like activity of WEHI-3B D(+) 20 S and 26 S proteasome enzymes. Neither KCl nor all-trans-retinoic acid affected enzyme activity, whereas NaCl produced a modest reduction at relatively high concentrations. In addition, LiCl inhibited 20 S proteasome chymotryptic-like activity from rabbits but had no effect on tryptic-like activity of the 26 S proteasome. This effect has significant consequences in stabilizing the retinoic acid receptor alpha protein levels that are necessary to promote continued differentiation of leukemia cells in response to all-trans-retinoic acid. In support of this concept, combination of proteasome inhibitors beta-clastolactacystin or benzyloxycarbonyl-Leu-Leu-Phe with all-trans-retinoic acid increased differentiation of WEHI-3B D(+) cells in a manner that was analogous to the combination of LiCl and all-trans-retinoic acid.  相似文献   

20.
目的:研究染料木黄酮对体外培养乳鼠颅盖骨成骨细胞增殖分化的影响。方法:取乳鼠颅盖骨,采用胶原-胰蛋白酶消化法,进行颅骨成骨细胞培养,取第二代成骨细胞,添加10^-5~10^-7mol/L染料木黄酮,在CO2孵箱中培养48h和72h后MTT比色法测定细胞增殖,培养72h采用^3H-TdR和^H-Pro掺入实验测定DNA和胶原合成。用试剂盒检测细胞裂解液碱性磷酸酶(ALP)活性。结果:染料木黄酮明显增加成骨细胞MTT的吸光度值、^3H-TdR和^3H-Pro的掺入,增加成骨细胞碱性磷酸酶活性。结论:染料木黄酮促进体外培养的乳鼠颅盖骨成骨细胞DNA和胶原的合成,促进增殖和分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号