首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Movement of chloride from cerebrospinal fluid (CSF) to brain or blood is one of the factors that may be involved in regulation of CSF [Cl-], which is important to CSF acid-base balance. We made quantitative measurements of the unidirectional outflux of radiolabeled chloride (38Cl, half-life 37.3 min) from CSF in anesthetized dogs, using ventriculocisternal perfusion (VCP). The outflux of 38Cl from CSF was determined from the difference between the movements of 38Cl and dextran using a one-compartment model. VCP was performed at a rate of 1.4 ml/min for 14 min, and then slowed to 0.28 ml/min. The 38Cl activity decreased to a steady-state level approximately 12% lower than that of dextran within 40-50 min. Under control conditions for the first run (n = 24), the flux was 0.042 +/- 0.003 (SE) ml/min. The outflux under control conditions (n = 6) tended to increase over three separate determinations in a 6-h period, being 136 +/- 19% of the first run on the second run, and 143 +/- 24% on the third. There were no significant changes in 38Cl outflux compared with control ratios after the inclusion of bumetanide in the VCP fluid (n = 6), which inhibits sodium-coupled Cl- transport, with acetazolamide (n = 6), which inhibits carbonic anhydrase, or with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (n = 6), an inhibitor of carrier-mediated anion exchange. These results suggest that the outward movement of chloride from CSF occurs mostly by passive diffusion and is not by mediated transport.  相似文献   

2.
This review addresses an often overlooked aspect of elasmobranch osmoregulation, i.e., control of body fluid volume. More specifically the review addresses the impact of changes in blood volume in elasmobranchs exposed to different environmental salinities. Measurement of blood volume in the European lesser-spotted dogfish, Scyliorhinus canicula, following acute and chronic exposure to 80% and 120% seawater (SW) is reported. In 80%, 100% and 120% SW-adapted S. canicula, blood volume was 6.3+/-0.2, 5.6+/-0.2 and 4.6+/-0.2 mL 100 g(-1) body mass, respectively. Blood volume was significantly higher and lower in 80% and 120% SW-acclimated animals compared to 100% SW controls. Comparisons are made between these results and previously published data. The role of drinking and volume regulation in elasmobranchs is discussed. For the first time measured water reabsorption rates and solute flux rates across the elasmobranch intestinal epithelia are presented. Water reabsorption rates did not differ between 100% SW-adapted bamboo shark, Chiloscyllium plagiosum, and fish acutely transferred to 140% SW. For the most part net solute flux rates and direction for both the 100% and 140% SW groups were the same with the exception of a net efflux of chloride and potassium in the 140% group and influx of these ions in the 100% adapted group. The significance of the intestine as part of the overall elasmobranch osmoregulatory strategy is discussed as is the role of the kidneys, rectal gland and gills in the regulation of body fluid volume in this class of vertebrates.  相似文献   

3.
Uptake kinetics of zidovudine into cerebrospinal fluid (CSF) and brain tissue were determined in adult Sprague Dawley male rats after single intravenous injection of 6.7 mg/kg (25 mumol/kg). The drug kinetics in plasma followed biexponential disposition with an initial distribution half-life of approximately 11 minutes and an elimination half-life of 40 minutes. Over the plasma concentration range of 0.2 to 10 micrograms/ml, the cerebrospinal fluid to plasma ratio averaged 14.8 +/- 1.9% whereas the mean brain tissue to plasma ratio was 8.2 +/- 1.2% (uncorrected) or 2.3 +/- 1.8% (corrected) for the brain vascular space contribution. Simultaneous nonlinear regression analysis of brain, CSF and plasma concentration data indicate that the overall rate constant for efflux of drug from brain is approximately 75-fold higher and from CSF is 8-fold higher than the respective rate constants for influx. Thus, the ratio of the efflux to influx appears to be the predominant factor in determining the net accumulation of drug into CSF and brain parenchymal tissue.  相似文献   

4.
Carrier-Mediated Transport of Chloride Across the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
36Cl concentrations in each of eight brain regions and in cisternal cerebrospinal fluid (CSF) were determined 30 min after the intravenous injection of 36Cl in dialyzed-nephrectomized rats with plasma Cl concentrations between 14 and 120 mumol X ml-1. CSF 36Cl exceeded 36Cl concentrations in brain extracellular fluid. The calculated blood-to-brain transfer constants for Cl, kCl, ranged from 1.8 X 10(-5) S-1 at the parietal cortex to 3.8 X 10(-5) S-1 at the thalamus-hypothalamus. kCl fell by 42-62% when mean plasma [Cl] was elevated from 16 to 114 mumol X ml-1. Brain uptake of [14C]mannitol or of 22Na was independent of plasma [Cl], but 22Na influx into CSF fell when plasma [Cl] was reduced. Cl flux into brain and CSF could be represented by Michaelis-Menten saturation kinetics, where, for the parietal cortex, Km = 43 mumol X ml-1 and Vmax = 2.5 X 10(-3) mumol X S-1 X g-1, and for CSF Km = 68 mumol X ml-1. At least 80% of 36Cl influx into the parietal cortex was calculated to occur at the cerebrovascular endothelium, whereas the remainder was derived from tracer that first entered CSF. The CSF contribution was greater at brain regions adjacent to cerebral ventricles. The results show that Cl transport at the cerebrovascular endothelium as well as at the choroid plexus epithelium is a saturable concentration-dependent process, and that the CSF is a significant intermediate pathway for Cl passage from blood to brain.  相似文献   

5.
Furosemide and cerebrospinal fluid ions during acute respiratory acidosis   总被引:2,自引:0,他引:2  
The purpose of this study was to investigate the effects of furosemide, an inhibitor of NaCl cotransport, on cisternal cerebrospinal fluid (CSF) acid-base balance during acute respiratory acidosis (ARA). We measured blood and CSF acid-base variables in two groups (n = 7 in each) of anesthetized, paralyzed, and mechanically ventilated dogs with bilateral ligation of renal pedicles (to eliminate saluresis). After base-line samples were obtained (-1 h), furosemide (50 mg/kg) was administered intravenously within 15 min (group II); group I received an equal volume of half-normal saline. ARA was induced 1 h later (0 h) and arterial CO2 tension was maintained between 55 and 60 Torr for 5 h. Mean cisternal CSF PCO2 was 42.8 +/- 2.6 and 39.5 +/- 1.7 Torr, respectively in groups I and II and rose approximately 20 Torr during ARA. In group I, CSF [HCO3-] was 22.0 +/- 1.0, 24.8 +/- 0.6, and 25.4 +/- 1.6 meq/l, respectively at 0, 2.5, and 5 h. Respective values for group II were 22.2 +/- 1.3, 24.3 +/- 1.8, and 24.6 +/- 1.0 meq/l. These values were not significantly different from each other. In each group, CSF [Na+-Cl-] increased significantly during ARA, but the changes were not significantly different when the two groups were compared. We conclude that furosemide at the dose used in the present study does not change ionic composition and acid-base balance of cisternal CSF compared with control. Because changes in CSF [Na+-Cl-] during ARA were similar in both groups, any inhibition of Cl- influx into CSF by furosemide should have been proportional to that of Na+.  相似文献   

6.
Unidirectional flux of 125I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.  相似文献   

7.
Disulfonic stilbenes combine with the carrier protein involved in anion transport and inhibit the exchange of Cl- for HCO3- in a variety of biomembranes. Our aim was to determine whether such a mechanism is operative in the regulation of cerebrospinal fluid (CSF) [HCO3-] in metabolic alkalosis. In anesthetized, curarized, and artificially ventilated dogs either mock CSF (group I, 9 dogs) or mock CSF containing SITS, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (group II, 7 dogs) was periodically injected into both lateral cerebral ventricles. During 6 h of isocapnic metabolic alkalosis, produced by intravenous infusion of Na2CO3 solution, plasma [HCO3-] was increased by approximately 14 meq/l in both groups. In SITS-treated animals the mean cisternal CSF [HCO3-] increased by 7.7 meq/l after 6 h, and this was significantly higher than the respective increment, 3.5 meq/l, noted in the control group. Increments in CSF [HCO3-] in both groups were reciprocated by decrements in CSF [Cl-] with CSF [Na+] remaining unchanged. Cisternal CSF PCO2 and lactate concentrations showed similar increments in both groups. It is hypothesized that in metabolic alkalosis a carrier transports HCO3- out of cerebral fluid in exchange for Cl- and that SITS inhibits this mechanism. The efflux of HCO3- out of CSF in metabolic alkalosis would minimize the rise in CSF [HCO3-] brought about by HCO3-] influx from blood into CSF and therefore contributes to the CSF [H+] homeostasis.  相似文献   

8.
Sodium influx in serum-deprived human fibroblasts is by way of a pathway which shows saturation kinetics. A plot of initial Na influx versus [Na]0 ([Na]i approximately equal to 10 mM) gives a simple Michaelis-Menten type of curve with a K1/2 = 70.0 +/- 8.1 mM and a Vmax = 14.5 +/- 1.9 mumol/g prot/min. A similar plot of initial Na influx versus [Na]0 in the presence of 10% fetal bovine serum (FBS) gives a nonsaturating curvilinear response which appears to be biphasic. A plot of the serum-dependent Na influx versus [Na]0 (obtained by subtracting the curve in the absence of FBS from the curve in the presence of 10% FBS) shows that there is a linear relationship between serum-induced Na influx and external [Na]. At physiological Na concentrations, in the presence of FBS, the serum-induced Na influx is equal to the amiloride-sensitive Na flux, whereas in the absence of serum amiloride inhibits less than 10% of the Na influx. The effect of intracellular Na on Na flux was tested by preloading cells with Na in a digitoxin-containing medium prior to measurement of Na flux. A plot of steady-state Na exchange flux versus [Na]0 ([Na]i approximately equal to [Na]0) in the absence of serum gives a curve that appears to saturate at approximately 100 mM Na (flux = 100 mumol/g prot/min) and then declines with increasing [Na] (flux = 40 mumol/g prot/min at 150 mM). In contrast to Na influx in control serum-deprived cells, Na flux in Na-loaded cells in dramatically inhibited by the presence of amiloride. Since the peak Na exchange flux of 100 mumol/g prot/min is greatly in excess of the Vmax for Na influx in control serum-deprived cells and the enhanced Na flux is amiloride-sensitive, elevating intracellular Na must somehow activate the amiloride-sensitive Na transport system, which is normally only minimally active in the absence of serum.  相似文献   

9.
This study has assessed the regulation of arterial blood and cerebrospinal fluid acid-base status in seven healthy men, at 250 m altitude and after 5 and 10-11 days sojourn at 4,300 m altitude (PaO2 = 39 mmHg day 1 to 48 mmHg day 11). We assumed that observed changes in lumbar spinal fluid acid-base status paralleled those in cisternal CSF, under these relatively steady-state conditions. Ventilatory acclimatization during the sojourn (-14 mmHg PaCO2 at day 11) was accompanied by: 1) reductions in [HCO3-] (-5 to -7 meq/1) which were similar in arterial blood and CSF; 2) substantial, yet incomplete, compensation (70-75%) of both CSF and blood pH; and 3) a level of CSF pH which was maintained significantly alkaline (+0.05 +/- 0.01) to normoxic control values. These data at 4,300 m confirmed and extended our previous findings for more moderate conditions of chronic hypoxia. It was postulated that the magnitude and time course of pH compensation in the CSF during chronic hypoxia and/or hypocapnia are determined by corresponding changes in plasma [HCO2-].  相似文献   

10.
This study was designed to characterize the role of the newly described endogenous opioid nociceptin/orphanin FQ (NOC/oFQ) in reduced cerebral blood flow (CBF) observed after ischemia-reperfusion (I/R) and combined hypoxia and ischemia-reperfusion (H-I/R), as a function of time after onset of reperfusion in newborn pigs equipped with a closed cranial window. Global cerebral ischemia (20 min) was induced via elevation of intracranial pressure, whereas hypoxia (10 min) decreased PO(2) to 35 +/- 3 mmHg with unchanged PCO(2). I/R elevated cerebrospinal fluid (CSF) NOC/oFQ from 67 +/- 4 to 266 +/- 29 pg/ml within 1 h, whereas values returned to control level within 4 h of reperfusion. H-I/R elevated CSF NOC/oFQ to 483 +/- 67 pg/ml within 1 h, and such values returned slowly to control level within 12 h of reperfusion. Topical NOC/oFQ (10(-8) M, 10(-6) M)-induced vasodilation was attenuated by I/R and reversed to vasoconstriction by H-I/R at 1 h of reperfusion (control, 9 +/- 1 and 16 +/- 1%; I/R, 3 +/- 1 and 6 +/- 1%; H-I/R, -6 +/- 1 and -11 +/- 1%). Such altered dilation returned to control values within 4 h in I/R animals and within 12 h in H-I/R animals. Blood flow in the cerebrum was reduced from 58 +/- 4 to 33 +/- 2 ml x min(-1) x 100 g(-1) within 1 h and returned to control value within 4 h in I/R animals. In animals pretreated with [F/G]NOC/oFQ(1-13)-NH(2) (1 mg/kg iv), an NOC/oFQ antagonist, however, CBF only fell to 43 +/- 3 ml x min(-1) x 100 g(-1) at 1 h of reperfusion. Similar observations were made in H-I/R animals. These data suggest that an elevated CSF NOC/oFQ concentration and altered vascular responsiveness to this opioid contribute to reductions in CBF observed after either I/R or H-I/R.  相似文献   

11.
(Na,K)-ATPase is thought to maintain the transmembrane electrochemical sodium gradient which powers secondary active sodium-coupled transport of a variety of solutes including amino acids and bile acids. However, little is known regarding the effect of sodium-coupled solute transport on intracellular sodium concentration ( [Na]ic) and on (Na,K)-ATPase-mediated cation pumping in the intact cell. In order to address this question, we have measured 22Na uptake rate, steady state 22Na content, and ouabain-suppressible 86Rb uptake rate in primary cultures of adult rat hepatocytes under a variety of conditions. Compared with control conditions (sodium uptake rate = 6.00 +/- 0.40 nmol X min-1 X mg-1; [Na]ic = 11.96 +/- 0.54 mM; cation pumping = 2.53 +/- 0.18 nmol X min-1 X mg-1), cation pumping was increased by taurocholate (less than or equal to 158%), alanine (less than or equal to 246%), monensin (less than or equal to 400%), and cold exposure (less than or equal to 525%), and this increase was accompanied by increases in Na uptake and [Na]ic. In contrast, preincubation in low sodium medium decreased all three variables. These changes in cation pumping were blocked in the absence of extracellular sodium and were not accompanied by changes in ouabain-suppressible ATP hydrolysis measured in cell homogenate. An overall plot of cation pumping versus [Na]ic yielded a sigmoid-shaped curve. Values for KNa (17.8 +/- 1.4 mM) and Vmax (8.98 +/- 0.62 nmol X min-1 X mg-1) for cation pumping were estimated assuming three sodium sites per pump unit. These findings indicate that: 1) uptake of alanine and taurocholate is associated with a rapid increase in (Na,K)-ATPase cation pumping; 2) this increase probably results from an increase in pumping per pump unit rather than an increase in the total number of pump units, and it appears to be mediated via an increase in sodium influx and [Na]ic; 3) [Na]ic under control conditions is close to the apparent KNa of cation pumping, implying that substrate availability may be the mechanism whereby sodium uptake is tightly linked to (Na,K)-ATPase cation pumping in intact hepatocytes.  相似文献   

12.
Human cerebrospinal fluid (CSF) inhibits the Na+/K+ pump in human red cells and the activity of purified Na+/K+-ATPase (Halperin, J. A., Shaeffer, R., Galvez, L., and Malavé, S. (1985) Proc. Natl. Acad. Sci. U.S. A. 80, 6102-6104, 1983; Halperin, J. A., Martin, A. M., and Malavé, S. (1985) Life Sci. 37, 561-566. We describe here some properties of the CSF inhibitor of the Na+/K+ pump. Active material was extracted from human CSF with 50% methanol and then concentrated and desalted by ultrafiltration. This extract inhibited, in a dose-dependent manner, the ouabain-sensitive influx of K+ into human red cells and the activity of purified Na+/K+-ATPase. Partial separation of the inhibitory activity was achieved by gel filtration and reverse-phase high performance liquid chromatography. Inhibition of both pump and enzyme was specific in that other red cell membrane transport systems or enzymes examined were not influenced by CSF extracts. Dialysis and ultrafiltration experiments indicate that the molecular weight of the inhibitor is approximately equal to 600. The inhibitory activity is sensitive to proteolytic enzymes indicating that the inhibitor might be a small peptide. In the presence of CSF extract the K0.5 for external K+ to stimulate the Na+/K+ pump increased from 1.4 to 3.1 mM, suggesting that the CSF inhibitor competes with external K+ for stimulation of the pump. We estimate that the concentration of the inhibitor in CSF might be approximately equal to 50 pg/ml, a value close to the concentration of other active peptides found in human CSF.  相似文献   

13.
These experiments examine the transfer of sucrose, urea, sodium, and albumin from blood to brain in new-born pigs exposed to an increase in ventilation pressure. We also studied the movement of urea and sodium from blood to cerebrospinal fluid (CSF). By use of a standard time-cycled pressure-limited infant respirator, mean airway pressure (Paw) was increased from approximately 3 to 17 cmH2O. Urea and albumin transfer into the brain were unchanged with increased Paw. Sodium transport decreased significantly in all brain regions, while sucrose transfer was increased in the cerebrum [transfer constant (Kin) = 3.5 +/- 0.04 vs. 9.9 +/- 1.0 cm3.g-1.s-1.10(6)] at the increased Paw. Transport of urea nd sodium from blood to CSF decreased to half of control values with increased Paw. Thus, in newborn pigs, increasing Paw selectively alters blood-to-brain transport. In addition, movement of tracers from blood to CSF was severely restricted, possibly by a decrease in CSF production. It appears likely that the increased cerebral venous pressure causes the observed changes in tracer transport. Such altered blood-to-brain transport could adversely affect neuronal function.  相似文献   

14.
Juvenile brown trout acclimated to fresh water of 0-3 mEq 1-1 calcium and neutral pH were exposed to pH 4-0 for 2 h at 10°C. Chloride influx was reduced by 66% and a 144% stimulation of chloride efflux recorded. The effect on chloride influx was reversed by returning the medium pH to 7-0, restoring the influx rate to 89% of its former value.
After a control period without aluminium, chloride influx and efflux were measured at 10°C at pH 7-0 in the presence of aluminium at a final concentration of 6-5 μM. The experiment was repeated at pH 5-5, and subsequently pH 4-0. At pH 7-0, aluminium stimulated chloride efflux by 105% but influx was not affected. At pH 4-0, efflux was not affected but influx reduced to 55%. At pH 5-5, influx was reduced by 62% and efflux was increased by 67-5%.
Thus, the effects of aluminium on chloride fluxes are shown to be separate from those of low pH alone, and the presence of aluminium in natural waters may have a detrimental effect on chloride balance which is most evident at pH 5-5.  相似文献   

15.
Polyacrylamide gel electrophoresis of plasma and concentrated cerebrospinal fluid (CSF) preincubated with tritium labelled 5 alpha-dihydrotestosterone (DHT) showed identical migration of the radioactivity, indicating the presence of sex-hormone-binding globulin (SHBG) in human CSF. The concentrations of SHBG (measured as the binding capacity) and albumin were measured in concentrated CSF (12 women and 1 man) and samples of plasma of some patients (9 women). SHBG could not be detected in 6 of the CSF samples, and the mean value of the determinable samples was 42.3 +/- 13.4 pmol/l. The mean +/- SE of the SHBG concentration in plasma was 90.8 +/- 8.9 nmol/l and the mean albumin concentrations in CSF and plasma were 3.4 +/- 0.6 mumol/l and 670 +/- 107 mumol/l respectively. The distribution ratio for SHBG over the blood-CSF barrier was 10 times higher than for albumin. It was concluded that the SHBG-binding in the CSF is negligible but that the albumin-binding may contribute to the CSF concentrations of testosterone and estradiol, which are 10-25% above the plasma unbound concentrations.  相似文献   

16.
A simple, sensitive and accurate method for the estimation of free and total (free plus protein-bound) melatonin (MLT) in human plasma and cerebrospinal fluid (CSF) is described. Via Chem-Elut cartridges, free and total MLT (the latter obtained after a deproteinization step) were quantified in dichloromethane-extracted samples and analyzed in one chromatographic run by high-performance liquid chromatography (HPLC) with fluorimetric detection. The column used was an Extrasil ODS-2 (3 microm, 150 x 4.6 mm I.D.), while the mobile phase consisted of 75 mM sodium acetate-acetonitrile (72:28, v/v) (pH 5.0). Repeatability and reproducibility of the method were 3.24 and 9.4%, respectively. The recovery of melatonin from plasma and CSF was 99.9+/-4.0% for non-deproteinized samples and 93.2+/-4.8% for deproteinized samples. The detection limit of the assay was 0.5 pg/ml. In human plasma, the mean+/-SD concentrations in the darkness period were 23.18+/-7.44 pg/ml for free melatonin and 82.5+/-36.48 pg/ml for total melatonin, while the lowest concentrations detected during daytime were 2.23+/-2.22 and 7.40+/-5.68 pg/ml, respectively. Detection of MLT in CSF was 5.01+/-2.31 and 28.55+/-6.95 pg/ml for the free and total fraction, respectively.  相似文献   

17.
A quantitative fluorescence assay has been developed to measure Cl flux across liposomal membranes for use in chloride transporter reconstitution studies. A Cl-sensitive fluorophore [6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ] was entrapped into phospholipid/cholesterol liposomes formed by bath sonication, high-pressure extrusion, and detergent dialysis. Liposomes containing entrapped SPQ were separated from external SPQ by passage down a Sephadex G25 column. There was less than 10% leakage of SPQ from liposomes in 8 h at 4 degrees C and in 2 h at 23 degrees C. Cl influx (JCl in millimolar per second or nanomoles per second per centimeter squared) was determined from the time course of SPQ fluorescence, measured by cuvette or stopped-flow fluorometry, in response to inward Cl gradients. In 90% phosphatidylcholine (10% cholesterol liposomes at 23 degrees C, JCl in response to a 50 mM inward Cl gradient was 0.06 +/- 0.01 mM.s-1 (SD, n = 3) in the absence and 0.27 +/- 0.02 mM.s-1 in the presence of a K/valinomycin voltage clamp (0 mV), showing that the basal Cl "leak" is conductive; JCl increased (1.7 +/- 0.1)-fold in the presence of a 60-mV inside-positive diffusion potential. Accuracy of chloride influx rates determined by the SPQ method was confirmed by measurement of 36Cl uptake. In liposomes voltage-clamped to 0 mV, JCl was linear with external [Cl] (0-100 mM), independent of pH gradients, and strongly dependent on temperature (activation energy 18 +/- 1 kcal/mol, 12-42 degrees C) as predicted for channel-independent Cl diffusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study was performed to determine whether variations in analgesic responses to intrathecal morphine could be explained by cerebrospinal fluid (CSF) concentrations of morphine metabolites. Twenty-four CSF samples were collected at the beginning, middle and end of treatment periods in seven cancer patients with pain of malignant origin. CSF concentrations of morphine-3,beta-glucuronide (M3G) and morphine-6,beta-glucuronide (M6G) metabolites were measured by gas chromatography/mass spectrometry. Analgesic responses to morphine were estimated concurrent with CSF collection using a visual analog scale representing percentages of pain relief. Effective analgesia was defined as > or = 75% pain relief. CSF concentration of M3G and M6G in the 24 samples were 722 +/- 116 ng/ml and 699 +/- 158 ng/ml, respectively. CSF samples were categorized into two groups: (1) those collected during effective analgesia (N=14), and (2) those collected during ineffective analgesia (N=10). M6G levels detected in group 1 samples (effective analgesia) were significantly greater than those found in group 2 samples (ineffective analgesia) (978 +/- 243 ng/ml vs 309 +/- 68 ng/ml, P<0.05). Intergroup differences in CSF M3G concentrations and M3G/M6G ratios were not significant. It is concluded that CSF M6G may be indicative of effectiveness of analgesia in cancer patients subjected to intrathecal morphine.  相似文献   

19.
To determine whether female Dahl salt-sensitive (SS) hypertensive rats would adapt to chronic treadmill exercise by exhibiting lower resting systolic blood pressures (RSBP), a 12-wk training program was undertaken. Female Dahl salt-resistant (SR) rats were also trained for the same time period a a similar intensity [40-70% maximal O2 consumption (VO2max)] and duration (55 min). Postexperimental treadmill run times and VO2max values [SR: nontrained (NT) 87 +/- 1, trained (T) 97 +/- 2; SS: NT 82 +/- 2, T 92 +/- 3 ml.min-1 X min-1 X kg-1] indicated that the prescribed program had produced a trained state. However, the training program caused no group differences between the SR or the SS and their nontrained controls in measurements associated with sodium chloride intake, fluid consumption, urine production, 24-h sodium excretion, plasma volumes, plasma insulin, or blood volumes. Chronic exercise did significantly lower RSBP in the SR subgroup after 6 wk (NT 123 +/- 4, T 110 +/- 3 mmHg) and 8 wk (NT 120 +/- 4, T 106 +/- 2 mmHg) and remained lower throughout the remaining weeks of the experiment. On the other hand, the RSBP results of the trained SS rats were significantly higher than the nontrained SS rats after 6 wk (NT 155 +/- 8, T 191 +/- 7 mmHg) and were never significantly different than the controls for the remainder of the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A colorimetic method is outlined for the determination of the chloride ion in biological samples (blood serum, plasma, and urine). The present method is based on the quantitative reduction of free mercuric ions by chloride ions. Chloride ions form an indissociable complex with mercuric ions. The remaining free mercuric ions form a purple complex with diphenylcarbazone with an absorption maximum at 550 nm. The reduction of color intensity at 550 nm is directly proportional to chloride concentration in the sample. The linear concentration range in the final reaction mixture was 0–100 μM with a correlation coefficient of −0.9997. The coefficient of variation for the 50 μM chloride ion in the final reaction mixture was 0.9% (n=6). The analyzed value of chloride concentration in the human control serum Accutrol™ Normal (Sigma) was 101±4 mM (mean±SD, n=12). The certified value of chloride in Accutrol Normal by Sigma is 102 mM, with a mean in the range 91–113 mM. This method was applied to the measurement of urinary chloride excretion in experimental rats. During 16-h urine collection, no food was given and rats had free access to purified water. The urinary excretion rate of chloride was 23.6±9.3 μmol/h (mean±SD, n=8) and 126.2±28.0 μmol/h (n=8) for rats fed a normal diet (2.6 g NaCl/kg diet) and a high-salt diet (82.6 g NaCl/kg diet) for 70 d prior to urine collection, respectively. This method is appropriate for low concentrations of chloride in samples or when sample volume is limiting, as in many animal studies such as metabolic urine collection from rats. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of the products that may also be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号