首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We here tabulate and describe all currently recognized proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and their homologues encoded within the genomes of sequenced E. coli strains. There are five recognized Enzyme I homologues and six recognized HPr homologues. A nitrogen-metabolic PTS phosphoryl transfer chain encoded within the rpoN and ptsP operons and a tri-domain regulatory PTS protein encoded within the dha (dihydroxyacetone catabolic) operon, probably serve regulatory roles exclusively. In addition to several additional putative regulatory proteins, there are 21 (and possibly 22) recognized Enzyme II complexes. Of the 21 Enzyme II complexes, 7 belong to the fructose (Fru) family, 7 belong to the glucose (Glc) family, and 7 belong to the other PTS permease families. All of these proteins are briefly described, and phylogenetic data for the major families are presented.  相似文献   

2.
3.
4.
5.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase system: Enzyme I, a small heat-stable protein, and Enzyme II. It is suggested that the activities of adenylate cyclase and the permease proteins are subject to allosteric regulation and that the allosteric effector is a regulatory protein which can be phosphorylated by the phosphotransferase system.  相似文献   

6.
The Enzymes II of the PEP:carbohydrate phosphotransferase system (PTS) specific for N-acetylglucosamine (IINag) and beta-glucosides (IIBgl) contain C-terminal domains that show homology with Enzyme IIIGlc of the PTS. We investigated whether one or both of the Enzymes II could substitute functionally for IIIGlc. The following results were obtained: (i) Enzyme IINag, synthesized from either a chromosomal or a plasmid-encoded nagE+ gene could replace IIIGlc in glucose, methyl alpha-glucoside and sucrose transport via the corresponding Enzymes II. An Enzyme IINag with a large deletion in the N-terminal domain but with an intact C-terminal domain could also replace IIIGlc in IIGlc-dependent glucose transport. (ii) After decryptification of the Escherichia coli bgl operon, Enzyme IIBgl could substitute for IIIGlc. (iii) Phospho-HPr-dependent phosphorylation of methyl alpha-glucoside via IINag/IIGlc is inhibited by antiserum against IIIGlc as is N-acetylglucosamine phosphorylation via IINag. (iv) In strains that contained the plasmid which coded for IINag, a protein band with a molecular weight of 62,000 D could be detected with antiserum against IIIGlc. We conclude from these results that the IIIGlc-like domain of Enzyme IINag and IIBgl can replace IIIGlc in IIIGlc-dependent carbohydrate transport and phosphorylation.  相似文献   

7.
Proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Bacillus subtilis were overexpressed, purified to near homogeneity, and characterized. The proteins isolated include Enzyme I, HPr, the glucose-specific IIA domain of the glucose-specific Enzyme II (IIAglc), and the mannitol-specific IIA protein, IIAmtl. Site specific mutant proteins of IIAglc and HPr were also overexpressed and purified, and their properties were compared with those of the wild type proteins. These proteins and their phosphorylated derivatives were characterized with respect to their immunological cross-reactivities employing the Western blot technique and in terms of their migratory behavior during sodium dodecyl sulfate-gel electrophoresis, nondenaturing gel electrophoresis, and isoelectric focusing. The interactions between homologous and heterologous Enzymes I and HPrs, between homologous and heterologous HPrs and the IIAglc proteins, and between homologous and heterologous IIAglc proteins and IIBCscr of B. subtilis as well as IICBglc of Escherichia coli were defined and compared kinetically. The mutant HPrs and IIAglc proteins were also characterized kinetically as PTS phosphocarrier proteins and/or as inhibitors of the phosphotransferase reactions of the PTS. These studies revealed that complexation of IIAglc with the mutant form of HPr in which serine 46 was replaced by aspartate (S46D) did not increase the rate of phosphoryl transfer from phospho Enzyme I to S46D HPr more than when IIAmtl was complexed to S46D HPr. These findings do not support a role for HPr(Ser-P) in the preferential utilization of one PTS carbohydrate relative to another. Functional analyses in E. coli established that IIAglc of B. subtilis can replace IIAglc of E. coli with respect both to sugar transport and to regulation of non-PTS permeases, catabolic enzymes, and adenylate cyclase. Site-specific mutations in histidyl residues 68 and 83 (H68A and H83A) inactivated IIAglc of B. subtilis with respect to phosphoryl transfer and its various regulatory roles.  相似文献   

8.
B G?rke  B Rak 《The EMBO journal》1999,18(12):3370-3379
In bacteria various sugars are taken up and concomitantly phosphorylated by sugar-specific enzymes II (EII) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphoryl groups are donated by the phosphocarrier protein HPr. BglG, the positively acting regulatory protein of the Escherichia coli bgl (beta-glucoside utilization) operon, is known to be negatively regulated by reversible phosphorylation catalyzed by the membrane spanning beta-glucoside-specific EIIBgl. Here we present evidence that in addition BglG must be phosphorylated by HPr at a distinct site to gain activity. Our data suggest that this second, shortcut route of phosphorylation is used to monitor the state of the various PTS sugar availabilities in order to hierarchically tune expression of the bgl operon in a physiologically meaningful way. Thus, the PTS may represent a highly integrated signal transduction network in carbon catabolite control.  相似文献   

9.
10.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

11.
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.  相似文献   

12.
The genes encoding the proteins of the fructose-specific phosphotransferase system (PTS) of Rhodobacter capsulatus were sequenced, and the deduced amino acyl sequences of the energy-coupling protein, Enzyme I, and the transport protein, Enzyme IIfru, were compared with published sequences. Enzyme I was found to be homologous to pyruvate:phosphate dikinase of plants, while Enzyme IIfru was found to be homologous to the insulin-responsive glucose facilitator of mammals. The evolutionary and functional implications of these findings are discussed.  相似文献   

13.
14.
The bacterial phosphotransferase system (PTS) is the major transport system for many carbohydrates that are phosphorylated concomitantly with the translocation step through the membrane (group translocation). It consists of two general proteins, enzyme I and histidine protein (HPr), and a series of more than 15 substrate-specific enzymes II (EII). The sequences of several of these derived from Gram-positive and Gram-negative bacteria were compared, which allowed the possible identification of the following functional domains: membrane-bound pore, substrate-binding site, linker domains, transphosphorylation domain and primary phosphorylation site. Several EIIs have been analysed in the meantime, also by topological tests, by sequential deletion of the corresponding structural genes, and by construction of intergenic hybrids between different domains of several EIIs. These data suggest evolutionary relationships between different EIIs; they also enable a general model to be constructed of EIIs as carbohydrate transport systems, phosphotransferases, chemoreceptors in chemotaxis and as part of a global regulatory network.  相似文献   

15.
The phosphoenolpyruvate-(PEP)-dependent-carbohydrate:phosphotransferase systems (PTSs) of enteric bacteria constitute a complex transport and sensory system. Such a PTS usually consists of two cytoplasmic energy-coupling proteins, Enzyme I (EI) and HPr, and one of more than 20 different carbohydrate-specific membrane proteins named Enzyme II (EII), which catalyze the uptake and concomitant phosphorylation of numerous carbohydrates. The most prominent representative is the glucose-PTS, which uses a PTS-typical phosphorylation cascade to transport and phosphorylate glucose. All components of the glucose-PTS interact with a large number of non-PTS proteins to regulate the carbohydrate flux in the bacterial cell. Several aspects of the glucose-PTS have been intensively investigated in various research projects of many groups. In this article we will review our recent findings on a Glc-PTS-dependent metalloprotease, on the interaction of EIICB(Glc) with the regulatory peptide SgrT, on the structure of the membrane spanning C-domain of the glucose transporter and on the modeling approaches of ptsG regulation, respectively, and discuss them in context of general PTS research.  相似文献   

16.
Expression of catabolite sensitive operons is repressed in E. coli mutants devoid of HPr--a component of glucose transport system. The ptsH mutants do not utilize the substrates for phosphoenolpyruvate dependent phosphotransferase system (PTS) except for fructose. Besides that, the mutants are deficient in utilization of many substrates entering the bacteria via the other transport systems. The ptsS mutation mapped in the region of the fructose regulon on the 46th min of the chromosomal map restores the growth of ptsH mutants on all substrates. The accumulation and PEP-dependent phosphorylation of proteins substrates of PTS is also restored. The synthesis of the fructose specific phosphotransferase system becomes constitutive under the effect of ptsS mutation. The mutation is supposed to impair the regulatory region of the fructose regulon.  相似文献   

17.
18.

SUMMARY

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号