首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One novel solution to the shortage of human organs available for transplantation envisions ‘growing’ new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.  相似文献   

2.
《Organogenesis》2013,9(2):59-66
Growing new organs in situ by implanting developing animal organ primordia (organogenesis) represents a novel solution to the problem of limited supply for human donor organs that offers advantages relative to transplanting embryonic stem (ES) cells or xenotransplantation of developed organs. Successful transplantation of organ primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. We and others have shown that renal primordia transplanted into the mesentery undergo differentiation and growth, become vascularized by blood vessels of host origin, exhibit excretory function and support life in otherwise anephric hosts. Renal primordia can be transplanted across isogeneic, allogeneic or xenogeneic barriers. Pancreatic primordia can be transplanted across the same barriers undergo growth, and differentiation of endocrine components only and secrete insulin in a physiological manner following mesenteric placement. Insulin-secreting cells originating from embryonic day (E) 28 (E28) pig pancreatic primordia transplanted into the mesentery of streptozotocin-diabetic (type 1) Lewis rats or ZDF diabetic (type 2) rats or STZ-diabetic rhesus macaques engraft without the need for host immune-suppression. Our findings in diabetic macaques represent the first steps in the opening of a window for a novel treatment of diabetes in humans.  相似文献   

3.
One solution to the shortage of human organs available for transplantation envisions growing new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. Allotransplantation of embryonic day 15 metanephroi into the omentum of adult hosts is followed by differentiation, growth, vascularization and function of the implants. Here we show that survival of rats with all native renal mass removed can be increased by prior metanephros transplantation and ureteroureterostomy. Excretion of urine formed by metanephroi is prerequisite for enhanced survival. This is the first demonstration that life can be extended following de novo renal organogenesis.  相似文献   

4.
One solution to the shortage of human organs available for transplantation envisions growing new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. Allotransplantation of embryonic day 15 metanephroi into the omentum of adult hosts is followed by differentiation, growth, vascularization and function of the implants. Here we show that survival of rats with all native renal mass removed can be increased by prior metanephros transplantation and ureteroureterostomy. Excretion of urine formed by metanephroi is prerequisite for enhanced survival. This is the first demonstration that life can be extended following de novo renal organogenesis.Key Words: cell therapy, end-stage renal disease, kidney, metanephros, transplantation  相似文献   

5.
The insufficient supply of tissue, loss posttransplantation, and limited potential for expansion of beta-cells restrict the use of islet allotransplantation for diabetes. A way to overcome the supply and expansion problems is to xenotransplant embryonic tissue. We have shown that whole rat pancreatic anlagen isotransplanted into the omentum of rats, or xenotransplanted into costimulatory blocked mice, undergo growth and differentiate into islets surrounded by stoma without exocrine tissue. Isotransplants normalize glucose tolerance in diabetic hosts. Here, we show that embryonic day 29 porcine pancreas transplanted into the omentum of adult diabetic rats undergoes endocrine tissue differentiation over 20 wk and normalizes body weights and glucose tolerance. Unlike rat-to-rodent transplants, individual alpha- and beta-cells engraft without a stromal component, and no immunosuppression is required for pig-to-rat transplants. Herein is described a novel means to effect the xenotransplantation of individual islet cells across a highly disparate barrier.  相似文献   

6.
7.
We have demonstrated that during culture under 5% O(2,) the addition of recombinant human VEGF or FGF2 to mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) stimulates microvessel formation. Here we show that microvessel formation is also stimulated by addition to explants of supernatants obtained from metanephroi grown in serum-free organ culture or of metanephroi extracts. Supernatants and extracts from metanephroi grown under hypoxic conditions are more stimulatory than supernatants/extracts from metanephroi grown in room air. VEGF and FGF2 can be detected by using immunohistochemistry in developing nephrons in the cultured renal anlagen. Metanephroi supernatants contain more VEGF if renal anlagen are grown under hypoxic conditions than if they are grown in room air. Metanephros supernatant-stimulated microvessel formation is completely inhibited by soluble sFlt-1 fusion protein or anti-VEGF antibodies (alphaVEGF). Extract-stimulated microvessel formation is inhibited by alphaVEGF or anti-FGF2 antibodies, or both. We conclude that metanephroi produce growth factors including VEGF and FGF that enhance microvessel formation from embryonic thoracic aorta in vitro.  相似文献   

8.
Previous work from this laboratory has demonstrated that transplantation of allogeneic thymic tissue as part of a composite vascularized graft is far more successful in terms of both engraftment and long-term survival than transplantation of thymic tissue or cells alone. We have subsequently extended this concept to transplantation of allogeneic islets, comparing survival of islet cell suspensions to that of vascularized composite islet-kidneys (IK), prepared by injection of autologous islets underneath the renal capsule 2-3 months prior to allogeneic transplantation of the composite organ. We have utilized partially inbred miniature swine with defined MHC loci as the experimental large animals for this study, permitting reproducible transplantation across specific MHC barriers. Composite IK have been transplanted successfully across minor and full MHC mismatch barriers, using treatment regimens previously demonstrated to induce long-term tolerance of kidney allografts across these barriers. IK allografts containing ≥5000 islet equivalents (IE)/kg recipient body weight were found capable of reversing surgically induced diabetes, while injection of comparable numbers of purified islets via the portal vein or under the renal capsule did not. Studies are also being directed toward preparation of autologous “thymo-islet-kidneys” (TIK), for potential use as xenografts, in which the thymic component is intended to induce tolerance and the islets to reverse diabetic hyperglycemia. The use of both types of composite organ transplants may eventually be applicable to the treatment of type I diabetic patients suffering from end-stage diabetic nephropathy.  相似文献   

9.
《Organogenesis》2013,9(3):154-162
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.  相似文献   

10.
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.  相似文献   

11.
Pancreatic islets have been isolated from the exocrine pancreas of inbred rats by the collagenase digestion method. Transplantation of isolated islets into the portal venous system of streptozotocin diabetic recipients resulted in complete abrogation of the diabetic state as measured by non-fasting serum glucose level, 24 h urinary output, rate of weight gain and glucose tolerance test. Transplantation to other sites resulted in less than optimal survival and function of islets. Allogeneic islets, transplanted across weak histocompatibility barriers, can survive and function for prolonged periods of time when transplanted recipients are immunosuppressed with antilymphocyte serum (ALS). Recipients of allogeneic islets, after a period of immunosuppression with ALS, become permanently tolerant to the allografted islets and to subsequent skin grafts from similar allogeneic donors. Allografted islets are able to prevent the occurrence of diabetic renal and ophthalmic changes that occur in control diabetic animals which had not undergone transplantation.  相似文献   

12.
Xenotransplantation—specifically from pig into human—could resolve the critical shortage of organs, tissues and cells for clinical transplantation. Genetic engineering techniques in pigs are relatively well-developed and to date have largely been aimed at producing pigs that either (1) express high levels of one or more human complement-regulatory protein(s), such as decay-accelerating factor or membrane cofactor protein, or (2) have deletion of the gene responsible for the expression of the oligosaccharide, Galα1,3Gal (Gal), the major target for human anti-pig antibodies, or (3) have both manipulations. Currently the transplantation of pig organs in adequately-immunosuppressed baboons results in graft function for periods of 2–6 months (auxiliary hearts) and 2–3 months (life-supporting kidneys). Pig islets have maintained normoglycemia in diabetic monkeys for >6 months. The remaining immunologic barriers to successful xenotransplantation are discussed, and brief reviews made of (1) the potential risk of the transmission of an infectious microorganism from pig to patient and possibly to the public at large, (2) the potential physiologic incompatibilities between a pig organ and its human counterpart, (3) the major ethical considerations of clinical xenotransplantation, and (4) the possible alternatives that compete with xenotransplantation in the field of organ or cell replacement, such as mechanical devices, tissue engineering, stem cell biology and organogenesis. Finally, the proximity of clinical trials is discussed. Islet xenotransplantation is already at the stage where clinical trials are actively being considered, but the transplantation of pig organs will probably require further genetic modifications to be made to the organ-source pigs to protect their tissues from the coagulation/anticoagulation dysfunction that plays a significant role in pig graft failure after transplantation in primates.Key words: islets, pancreatic, genetic engineering, organogenesis, pig, xenotransplantation  相似文献   

13.
Summary When estrogen is present in culture medium, enzyme-dissociated cells from estrogen-induced primary renal tumors in Syrian hamsters and from 1st to 4th serially transplanted carcinomas in monolayer culture contain progesterone receptor levels that are similar and comparable to those in tumors in vivo (i.e., 2 pmol/3×106 cells). Despite the similarity of receptor levels in cultured cells isolated from primary and transplanted tumors, the ability of cells to be maintained in culture differs considerably from one tumor stage to another. When cultured as monolayers in plastic flasks, isolated cells from primary tumors exhibit a marked decline in cell number after 4 to 6 d in culture. On the other hand, monolayer-cultured cells from first and second transplantation tumors remain essentially constant in cell number over a 2 wk culture period and cells from third transplantation tumors undergo a two- to threefold increase in cell number during 2 wk in culture. When primary tumor cells are cultured in collagen gels, the decline in cell number over a 2 wk culture period is prevented and progesterone receptor levels remain elevated. Cells cultured from first transplantation tumors exhibit a delayed decline in cell number beginning after 2 wk in monolayer culture. The decline in cell number in monolayer culture, like that for cells from primary tumors, can be prevented by culturing cells from first transplantation tumors in collagen gels. Neither cells from primary nor first transplantation tumors exhibit significant increases in cell number in collagen gels. Increasing the serum concentration of growth medium to 30% does not stimulate growth of cells under these conditions. Cells isolated from fourth transplantation tumors undergo a fourfold increase in cell number over a 1 month culture period whether cells are cultured as monolayers or in collagen gels. This investigation was supported by Grant CA 22008 awarded by the National Cancer Institute, Department of Health, Education and Welfare, and by institutional research funds from Marquette University.  相似文献   

14.
Tilapia, a teleost fish species with large anatomically discrete islet organs (Brockmann bodies; BBs) that can be easily harvested without expensive and fickle islet isolation procedures, make an excellent donor species for experimental islet xenotransplantation research. When transplanted into streptozotocin-diabetic nude or severe combined immunodeficient mice, BBs provide long-term normoglycemia and mammalian-like glucose tolerance profiles. However, when transplanted into euthymic recipients, the mechanism of islet xenograft rejection appears very similar to that of islets from "large animal" donor species such as the very popular fetal/neonatal porcine islet cell clusters (ICCs). Tilapia islets are more versatile than ICCs and can be transplanted (1) into the renal subcapsular space, the cryptorchid or noncryptorchid testis, or intraportally as neovascularized cell transplants; (2) as directly vascularized organ transplants; or (3) intraperitoneally after microencapsulation. Unlike the popular porcine ICCs, BBs function immediately after transplantation; thus, their rejection can be assessed on the basis of loss of function as well as other parameters. We have also shown that transplantation of tilapia BBs into nude mice can be used to study the possible implications of cross-species physiological incompatibilities in xenotransplantation. Unfortunately, tilapia BBs might be unsuitable for clinical islet xenotransplantation because tilapia insulin differs from human insulin by 17 amino acids and, thus, would be immunogenic and less biologically active in humans. Therefore, we have produced transgenic tilapia that express a "humanized" tilapia insulin gene. Future improvements on these transgenic fish may allow tilapia to play an important role in clinical islet xenotransplantation.  相似文献   

15.
Summary We describe the results of cell transplantation experiments performed to investigate mesodermal lineages in Drosophila melanogaster, particularly the lineages of the somatic muscles, the visceral muscles and the fat body. Cells to be transplanted were labelled by injecting a mixture of horseradish peroxidase (HRP) and fluorescein-dextran (FITC) in wild-type embryos at the syncytial blastoderm stage. For transplantation cells were removed from the ventral furrow, 8–12 min after the start of gastrulation, and individually transplanted into homotopic or heterotopic locations of unlabelled wild-type hosts of the same age. HRP labelling in the resulting cell clones was demonstrated histochemically in the fully developed embryo; histotypes could be distinguished without ambiguity. Mesodermal cells were already found to be committed to mesodermal fates at the time of transplantation. They developed only into mesodermal derivatives and did not integrate in non-mesodermal organs upon heterotopical transplantation. No evidence was found for commitment to any particular mesodermal organ at the time of transplantation. The majority of somatic muscle clones contributed cells to only one segment. However, clones were not infrequently distributed through two or even three segments. Clones of fat body cells were generally restricted to a small region. However, cells of clones of visceral musculature were widely distributed. With respect to the proliferative abilities of transplanted cells the clones were difficult to interpret due to the syncytial character of the somatic musculature and the fact that the organization of the other organs is poorly understood. Evidence from histological observations of developing normal embryos indicates only three mitoses for mesodermal cells. Clones larger than seven cells were not found when embryos were fixed previous to germ-band shortening; larger clones were found in the fat body and visceral musculature after fixing the embryos at the end of organogenesis. Quantitative considerations suggest that a few mesodermal cells might perform more than three mitoses.  相似文献   

16.
Grompe M 《Human cell》1999,12(4):171-180
Orthotopic liver transplantation is the treatment of choice for many inherited and acquired liver diseases. Unfortunately, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocyte suspensions can be isolated from a single donor liver can be transplanted into several hosts, and this procedure may help overcome the shortage in donor livers. In classic hepatocyte transplantation, however, only 1% of the liver mass or less can be replaced by donor cells. Recently though, we have used a mouse model of hereditary tyrosinemia to show that > 90% of host hepatocytes can be replaced by a small number of transplanted donor cells in a process we term "therapeutic liver repopulation". This phenomenon is analogous to repopulation of the hematopoietic system after bone marrow transplantation. Liver repopulation occurs when transplanted cells have a growth advantage in the setting of damage to recipient liver cells. Here we will review the current knowledge of this process and discuss the hopeful implications for treatment of liver diseases.  相似文献   

17.
18.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.  相似文献   

19.
A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks ∼5–12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia. Within syncytia bell shaped nuclear number increases binomially up to 16 or 32 nuclei; clusters of syncytia are regularly dispersed in organ anlagen. Syncytial bell shaped nuclei demonstrate two forms of symmetrical amitoses, facing or “kissing” bells and “stacking” bells resembling separation of two paper cups. Remarkably, DNA increase and nuclear fission occur coordinately. Importantly, syncytial bell shaped nuclei undergo asymmetrical amitoses creating organ specific ensembles of up to eight distinct closed nuclear forms, a characteristic required of a stem cell lineage. Closed nuclei emerging from bell shaped nuclei are eukaryotic as demonstrated by their subsequent increases by extra-syncytial mitoses populating the parenchyma of growing anlagen. From 9–14 weeks syncytia fragment forming single cells with bell shaped nuclei that continue to display both symmetrical and asymmetrical amitoses. These forms persist in the juvenile period and are specifically observed in bases of colonic crypts. Metakaryotic forms are found in organogenesis of humans, rats, mice and the plant Arabidopsis indicating an evolutionary origin prior to the divergence of plants and animals.  相似文献   

20.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号