首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
2.
Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.  相似文献   

3.
Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase (PKS) that catalyzes iterative condensations of eight molecules of malonyl-CoA to produce the C16 aromatic octaketides SEK4 and SEK4b. On the basis of the crystal structures of OKS, the F66L/N222G double mutant was constructed and shown to produce an unnatural dodecaketide TW95a by sequential condensations of 12 molecules of malonyl-CoA. The C24 naphthophenone TW95a is a product of the minimal type II PKS (whiE from Streptomyces coelicolor), and is structurally related to the C20 decaketide benzophenone SEK15, the product of the OKS N222G point mutant. The C24 dodecaketide naphthophenone TW95a is the first and the longest polyketide scaffold generated by a structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the F66L/N222G mutant is increased to 748 Å3, from 652 Å3 of the wild-type OKS. The structure-based engineering thus greatly expanded the catalytic repertoire of the simple type III PKS to further produce larger and more complex polyketide molecules.  相似文献   

4.

Background

The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS) genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS) genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes.

Methodology/Principal Findings

All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05). There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05).

Conclusions/Significance

The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages.  相似文献   

5.
植物类型Ⅲ聚酮化合物合酶(PKS)催化合成多种植物次生代谢产物的基本分子骨架,参与植物体许多重要生物学功能的行使,一直是研究蛋白结构与功能关系、基于结构进行分子改造的重要模式分子家族。目前在蛋白质数据库(PDB)中有超过80个不同种属来源的类型Ⅲ PKS的三维结构被报道,其中包括了研究最为透彻的查尔酮合酶在内的7种酶的晶体结构,这些结构的发表对于阐明该类酶复杂多变的底物专一性、链延伸和不同的环化反应机制奠定了结构基础。三维空间结构解析以及基于定点突变的结构功能分析是进行酶工程、基因工程的基础。以下系统综述了植物类型Ⅲ PKS超家族晶体结构和功能的研究进展。  相似文献   

6.
The melanin polyketide synthase (pks) gene of Nodulisporium sp. MF5954 (ATCC74245) was cloned by exploiting its homology to the Colletotrichum lagenarium pks1 gene. Sequence analysis demonstrated that this gene is 70% identical to the C. lagenarium pks1 gene. A gene disruption construct, designed to replace both the ketoacyl synthase and acyl transferase domains with a hygromycin resistance (Hyr) gene, was synthesized, and used to disrupt the Nodulisporium melanin pks1 gene via homologous recombination, resulting in a mel(−) phenotype. Sequence analyses of the gene and of cDNA segments generated by RT-PCR indicate that there are three introns in the 5′ half of the gene. The proposed 2159-amino acid product is 72% identical and 78% similar to the 2187-amino acid sequence deduced from the C. lagenarium pks1 gene. This similarity is notable, considering that C. lagenarium is a member of the order Phyllachoales or Sordariales, whereas Nodulisporium is generally believed to be member of the order Xylariales. However, despite the strong resemblance between the amino acid sequences in the acyl transferase domains of the two proteins, only one in five codons are conserved in the DNA sequences that encode this motif. The Nodulisporium sp. pks1 gene sequence and the amino acid sequence deduced from its coding region have been deposited in Genbank under Accession No. AF151533. Received: 15 May 1999 / Accepted: 26 July 1999  相似文献   

7.
8.
9.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型III 聚酮化合物合酶 (PKS) 在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型III PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型III PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型III PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

10.
AIMS: Phthiocerol dimycocerosate (PDIM) waxes and other lipids are necessary for successful Mycobacterium tuberculosis infection, although the exact role of PDIM in host-pathogen interactions remains unclear. In this study, we investigated the contribution of tesA, drrB, pks6 and pks11 genes in complex lipid biosynthesis in M. tuberculosis. METHODS AND RESULTS: Four mutants were selected from M. tuberculosis H37Rv transposon mutant library. The transposon insertion sites were confirmed to be within the M. tuberculosis open reading frames for tesA (a probable thioesterase), drrB (predicted ABC transporter), pks11 (putative chalcone synthase) and pks6 (polyketide synthase). The first three of these transposon mutants were unable to generate PDIM and the fourth lacked novel polar lipids. CONCLUSIONS: Mycobacterium tuberculosis can be cultivated in vitro without the involvement of certain lipid synthesis genes, which may be necessary for in vivo pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of transposon mutants is a new functional genomic approach for the eventual definition of the mycobacterial 'lipidome'.  相似文献   

11.
Chloroacetamide herbicides inhibit very-long-chain fatty acid elongase, and it has been suggested that covalent binding to the active site cysteine of the condensing enzyme is responsible [Pest Manage Sci 56 (2000), 497], but direct evidence was not available. The proposal implied that other condensing enzymes might also be targets, and therefore we have investigated four purified recombinant type III plant polyketide synthases. Chalcone synthase (CHS) revealed a high sensitivity to the chloroacetamide metazachlor, with 50% inhibition after a 10 min pre-incubation with 1-2 molecules per enzyme subunit, and the inactivation was irreversible. Stilbene synthase (STS) inactivation required 20-fold higher amounts, and 4-coumaroyltriacetic acid synthase and pyrone synthase revealed no response at the highest metazachlor concentrations tested. A similar spectrum of differential responses was detected with other herbicides that also inhibit fatty acid elongase (metolachlor and cafenstrole). The data indicate that type III polyketide synthases are potential targets of these herbicides, but each combination has to be investigated individually. The interaction of metazachlor with CHS was investigated by mass spectrometric peptide mapping, after incubation of the enzymes with the herbicides followed by tryptic digestion. A characteristic mass shift and MS/MS sequencing of the respective peptide showed that metazachlor was covalently bound to the cysteine of the active site, and the same was found with STS. This is the first direct evidence that the active site cysteine in condensing enzymes is the primary common target of these herbicides.  相似文献   

12.
Fungal type I polyketide (PK) compounds are highly valuable for medical treatment and extremely diverse in structure, partly because of the enzymatic activities of reducing domains in polyketide synthases (PKSs). We have cloned several PKS genes from the fungus Xylaria sp. BCC 1067, which produces two polyketides: depudecin (reduced PK) and 19,20-epoxycytochalasin Q (PK-nonribosomal peptide (NRP) hybrid). Two new degenerate primer sets, KA-series and XKS, were designed to amplify reducing PKS and PKS-NRP synthetase hybrid genes, respectively. Five putative PKS genes were amplified in Xylaria using KA-series primers and two more with the XKS primers. All seven are predicted to encode proteins homologous to highly reduced (HR)-type PKSs. Previously designed primers in LC-, KS-, and MT-series identified four additional PKS gene fragments. Selected PKS fragments were used as probes to identify PKS genes from the genomic library of this fungus. Full-length sequences for five PKS genes were obtained: pks12, pks3, pksKA1, pksMT, and pksX1. They are structurally diverse with 1-9 putative introns and products ranging from 2162 to 3654 amino acids in length. The finding of 11 distinct PKS genes solely by means of PCR cloning supports that PKS genes are highly diverse in fungi. It also indicates that our KA-series primers can serve as powerful tools to reveal the genetic potential of fungi in production of multiple types of HR PKs, which the conventional compound screening could underestimate.  相似文献   

13.
A cDNA encoding a novel plant type III polyketide synthase was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae). The deduced amino acid sequence of Hu. serrata polyketide synthase 1 showed 44-66% identity to those of other chalcone synthase superfamily enzymes of plant origin. Further, phylogenetic tree analysis revealed that Hu. serrata polyketide synthase 1 groups with other nonchalcone-producing type III polyketide synthases. Indeed, a recombinant enzyme expressed in Escherichia coli showed unusually versatile catalytic potential to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, it is remarkable that the enzyme accepted bulky starter substrates such as 4-methoxycinnamoyl-CoA and N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 4-methoxy-2',4',6'-trihydroxychalcone and 1,3-dihydroxy-N-methylacridone, respectively. In contrast, regular chalcone synthase does not accept these bulky substrates, suggesting that the enzyme has a larger starter substrate-binding pocket at the active site. Although acridone alkaloids have not been isolated from Hu. serrata, this is the first demonstration of the enzymatic production of acridone by a type III polyketide synthase from a non-Rutaceae plant. Interestingly, Hu. serrata polyketide synthase 1 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).  相似文献   

14.
15.
Hyperforin is an important antidepressant constituent of Hypericum perforatum (St. John's wort). Cell cultures of the related species H. calycinum were found to contain the homologue adhyperforin and to a low extent hyperforin, when grown in BDS medium in the dark. Adhyperforin formation paralleled cell culture growth. Cell-free extracts from the cell cultures contained isobutyrophenone synthase activity catalyzing the condensation of isobutyryl-CoA with three molecules of malonyl-CoA to give phlorisobutyrophenone, i.e. the hyperforin skeleton. The formation of the hyperforins during cell culture growth was preceded by an increase in isobutyrophenone synthase activity. The cell cultures also contained benzophenone synthase and chalcone synthase activities which are involved in xanthone and flavonoid biosyntheses, respectively. The three type III polyketide synthases were separated by anion exchange chromatography.  相似文献   

16.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   

17.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

18.
Infections caused by biofilms are abundant and highly persistent, displaying phenotypic resistance to high concentrations of antimicrobials and modulating host immune systems. Tuberculosis (TB), caused by Mycobacterium tuberculosis, shares these qualities with biofilm infections. To identify genetic determinants of biofilm formation in M. tuberculosis, we performed a small-scale transposon screen using an in vitro pellicle biofilm assay. We identified five M. tuberculosis mutants that were reproducibly attenuated for biofilm production relative to that of the parent strain H37Rv. One of the most attenuated mutants is interrupted in pks1, a polyketide synthase gene. When fused with pks15, as in some M. tuberculosis isolates, pks1 contributes to synthesis of the immunomodulatory phenolic glycolipids (PGLs). However, in strains such as H37Rv with split pks15 and pks1 loci, PGL is not produced and pks1 has no previously defined role. We showed that pks1 complementation restores biofilm production independently of the known role of pks1 in PGL synthesis. We also assessed the relationship among biofilm formation, the pks15/1 genotype, and M. tuberculosis phylogeography. A global survey of M. tuberculosis clinical isolates revealed surprising sequence variability in the pks15/1 locus and substantial variation in biofilm phenotypes. Our studies identify novel M. tuberculosis genes that contribute to biofilm production, including pks1. In addition, we find that the ability to make pellicle biofilms is common among M. tuberculosis isolates from throughout the world, suggesting that this trait is relevant to TB propagation or persistence.  相似文献   

19.
Miku Matsuzawa 《Phytochemistry》2010,71(10):1059-306
Alkylresorcinols, produced by various plants, bacteria, and fungi, are bioactive compounds possessing beneficial activities for human health, such as anti-cancer activity. In rice, they accumulate in seedlings, contributing to protection against fungi. Alkylresorcylic acids, which are carboxylated forms of alkylresorcinols, are unstable compounds and decarboxylate readily to yield alkylresorcinols. Genome mining of the rice Oryza sativa identified two type III polyketide synthases, named ARAS1 (alkylresorcylic acid synthase) and ARAS2, that catalyze the formation of alkylresorcylic acids. Both enzymes condensed fatty acyl-CoAs with three C2 units from malonyl-CoA and cyclized the resulting tetraketide intermediates via intramolecular C-2 to C-7 aldol condensation. The alkylresorcylic acids thus produced were released from the enzyme and decarboxylated non-enzymatically to yield alkylresorcinols. This is the first report on a plant type III polyketide synthase that produces tetraketide alkylresorcylic acids as major products.  相似文献   

20.
An acyltransferase-homologous DNA fragment was amplified in a PCR reaction on a cosmid DNA template from the genomic DNA library of the soil bacterium Streptomyces coelicolor A3(2). The putative amino acid sequence of the fragment resembles acyl-CoA:ACP acyltransferase domains from several bacterial enzymatic complexes of polyketide synthase. There is a high similarity with acyltransferase domains from so-called type I polyketide synthases. Such synthases catalyze production of the aglycone portion of macrolides and polyethers that are important as antibiotics or immunosuppressants. The amplified fragment is considered to be a part of a larger gene complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号