首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian proprotein convertase furin has been found to play an important role in diverse physiological and pathological events, such as the activation of viral glycoproteins and bacterial exotoxins. Small, non-toxic and highly active, furin inhibitors are considered to be attractive drug candidates for diseases caused by virus and bacteria. In this study, a series of peptide inhibitors were designed and synthesized based on the C-terminal fragment of histone H1.2, which has an inhibitory effect on furin. Replacing the reactive site of inhibitors with the consensus substrate recognition sequence of furin has been found to increase inhibitory activity greatly. The most potent inhibitor, I4, with 14 amino acid residues has a Ki value of 17 nM for furin. Although most of the synthesized peptides were temporary inhibitors, the inhibitor I5, with nine amino acids, retained its full potency, even after a 3 h incubation period with furin at 37 degrees C. These inhibitors may potentially lead to the development of anti-viral and anti-bacterial drug compounds.  相似文献   

2.
Tao H  Zhang Z  Shi J  Shao XX  Cui D  Chi CW 《The FEBS journal》2006,273(17):3907-3914
Highly active, small-molecule furin inhibitors are attractive drug candidates to fend off bacterial exotoxins and viral infection. Based on the 22-residue, active Lys fragment of the mung bean trypsin inhibitor, a series of furin inhibitors were designed and synthesized, and their inhibitory activity towards furin and kexin was evaluated using enzyme kinetic analysis. The most potent inhibitor, containing 16 amino acid residues with a Ki value of 2.45x10(-9) m for furin and of 5.60x10(-7) m for kexin, was designed with three incremental approaches. First, two nonessential Cys residues in the Lys fragment were deleted via a Cys-to-Ser mutation to minimize peptide misfolding. Second, residues in the reactive site of the inhibitor were replaced by the consensus substrate recognition sequence of furin, namely, Arg at P1, Lys at P2, Arg at P4 and Arg at P6. In addition, the P7 residue Asp was substituted with Ala to avoid possible electrostatic interference with furin inhibition. Finally, the extra N-terminal and C-terminal residues beyond the doubly conjugated disulfide loops were further truncated. However, all resultant synthetic peptides were found to be temporary inhibitors of furin and kexin during a prolonged incubation, with the scissile peptide bond between P1 and P1' being cleaved to different extents by the enzymes. To enhance proteolytic resistance, the P1' residue Ser was mutated to D-Ser or N-methyl-Ser. The N-methyl-Ser mutant gave rise to a Ki value of 4.70x10(-8) m for furin, and retained over 80% inhibitory activity even after a 3 h incubation with the enzyme. By contrast, the d-Ser mutant was resistant to cleavage, although its inhibitory activity against furin drastically decreased. Our findings identify a useful template for the design of potent, specific and stable peptide inhibitors of furin, shedding light on the molecular determinants that dictate the inhibition of furin and kexin.  相似文献   

3.
Histone H1 and its C-terminal lysine rich fragments were recently found to be potent inhibitorsof furin,a mammalian proprotein convertase.However,its role in the regulation of furin-dependent proproteinprocessing remains unclear.Here we report that histone H1 efficiently blocks furin-dependent pro-yonWillebrand factor(pro-vWF)processing in a dose-dependent manner.Coimmunoprecipitation and immunof-luorescence studies confirmed that histone H1 could interact with furin,and the interaction mainly took placeon the cell surface.We noted that histone H1 was released from cells undergoing necrosis and apoptosisinduced by H_2O_2.Our findings suggested that histone H1 might be involved in extracellular and/or intracellu-lar furin regulation.  相似文献   

4.
A low molecular weight serine protease inhibitor, named trypstatin, was purified from rat peritoneal mast cells. It is a single polypeptide with 61 amino acid residues and an Mr of 6610. Trypstatin markedly inhibits blood coagulation factor Xa (Ki = 1.2 x 10(-10) M) and tryptase (Ki = 3.6 x 10(-10) M) from rat mast cells, which have activities that convert prothrombin to thrombin. It also inhibits porcine pancreatic trypsin (Ki = 1.4 x 10(-8) M) and chymase (Ki = 2.4 x 10(-8) M) from rat mast cells, but not papain, alpha-thrombin, or porcine pancreatic elastase. Trypstatin forms a complex in a molar ratio of 1:1 with trypsin and one subunit of tryptase. The complete amino acid sequence of this inhibitor was determined and compared with those of Kunitz-type inhibitors. Trypstatin has a high degree of sequence homology with human and bovine inter-alpha-trypsin inhibitors, A4(751) Alzheimer's disease amyloid protein precursor, and basic pancreatic trypsin inhibitor. However, unlike other known Kunitz-type protease inhibitors, it inhibits factor Xa most strongly.  相似文献   

5.
A proteinacious inhibitor of S-adenosyl-L-methionine (AdoMet)-dependent transmethylation reactions was purified to homogeneity from porcine liver by size exclusion chromatography and FPLC. The molecular weight of the inhibitor was 12,222 Da. A 7400 Da polypeptide fragment of the purified inhibitor was sequenced by matrix-associated laser desorption ionization; time-of-flight MS, and was found to be identical with the known sequence of spinach acyl carrier protein (ACP). Although the remainder of the molecule was not clearly defined, 1H and H-H correlation of spectroscopy (COSY) NMR analysis revealed the presence of an oligosaccharide with alpha-glycosidic linkage. The purified oligosaccharide-linked ACP inhibited several AdoMet-dependent transmethylation reactions such as protein methylase I and II. S-farnesylcysteine O-methyltransferase, DNA methyltransferase and phospholipid methyltransferase. Protein methylase II was inhibited with a Ki value of 2.4 x 10(-3) M in a mixed inhibition pattern, whereas a well-known competitive product inhibitor S-adenosyl-L-homocysteine (AdoHcy) had Ki value of 6.3 x 10(-6) M. Commercially available active ACP fragments (65-74) and ACP from Escherichia coli had less inhibitory activity toward S-farnesylcysteine O-methyltransferase than the purified inhibitor. The biological significance of this oligosaccharide-linked ACP which has two seemingly unrelated functions (inhibitor for transmethylation and fatty acid biosynthesis) remains to be elucidated.  相似文献   

6.
Proprotein convertases (PCs) are serine proteases containing a subtilisin-like catalytic domain that are involved in the conversion of hormone precursors into their active form. This study aims at designing small cyclic peptides that would specifically inhibit two members of this family of enzymes, namely, the neuroendocrine PC1/3 and the ubiquitously expressed furin. We studied peptide sequences related to the 18-residue loop identified as the active site of the 83 amino acid barley serine protease inhibitor 2 (BSPI-2). Peptides incorporating mutations at various positions in the sequence were synthesized on solid phase and purified by HPLC. Cyclization was achieved by the introduction of a disulfide bridge between the two Cys residues located at both the N- and C-terminal extremities. Peptides VIIA and VIIB incorporating P4Arg, P2Lys, P1Arg, and P2'Lys were the most potent inhibitors with K(i) around 4 microM for furin and around 0.5 microM for PC1/3. Whereas peptide VIIB behaved as a competitive inhibitor of furin, peptide VIIA acted as a noncompetitive one. However, all peptides were eventually cleaved after variable incubation times by PC1/3 or furin. To avoid this problem, we incorporated at the identified cleavage site a nonscissile aminomethylene bond (psi[CH(2)-NH]). Those pseudopeptides, in particular peptide VIID, were shown not to be cleaved and to inhibit potently furin. Conversely, they were not able to inhibit PC1/3 at all. Those results show the validity of this approach in designing new effective PC inhibitors showing a certain level of discrimination between PC1/3 and furin.  相似文献   

7.
A trypsin inhibitor from Dimorphandra mollis seeds was isolated to apparent homogeneity by a combination of ammonium sulfate precipitation, gel filtration, ion-exchange and affinity chromatographic techniques. SDS-PAGE analysis gave an apparent molecular weight of 20 kDa, and isoelectric focusing analysis demonstrated the presence of three isoforms. The partial N-terminal amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz family of inhibitors. This inhibitor, which inhibited trypsin activity with a Ki of 5.3 x 10(-10) M, is formed by a single polypeptide chain with an arginine residue in the reactive site.  相似文献   

8.
An inhibitor (BGIA) against an acidic amino acid-specific endopeptidase of Streptomyces griseus (Glu S. griseus protease) was isolated from seeds of the bitter gourd Momordica charantia L., and its amino acid sequence was determined. The molecular weight of BGIA based on the amino acid sequence was calculated to be 7419. BGIA competitively inhibited Glu S. griseus protease with an inhibition constant (Ki) of 70 nM, and gel filtration analyses suggested that BGIA forms a 1:1 complex with this protease. However, two other acidic amino acid-specific endopeptidases, protease V8 from Staphylococcus aureus and Bacillus subtilis proteinase (Glu B. subtilis protease), were not inhibited by BGIA. BGIA had no inhibitory activity against chymotrypsin, trypsin, porcine pancreatic elastase, and papain, although subtilisin Carlsberg was strongly inhibited. The amino acid sequence of BGIA shows similarity to potato chymotrypsin inhibitor, barley subtilisin-chymotrypsin inhibitor CI-1 and CI-2, and leech eglin C, especially around the reactive site. Although the residue at the putative reactive site of these inhibitors is leucine or methionine, the corresponding amino acid in BGIA is alanine.  相似文献   

9.
Komiyama T  Fuller RS 《Biochemistry》2000,39(49):15156-15165
We engineered eglin c, a potent subtilisin inhibitor, to create inhibitors for enzymes of the Kex2/furin family of proprotein processing proteases. A structural gene was synthesized that encoded "R(1)-eglin", having Arg at P(1) in the reactive site loop in place of Leu(45). Ten additional variants were created by cassette mutagenesis of R(1)-eglin. These polypeptides were expressed in Escherichia coli, purified to homogeneity, and their interactions with secreted, soluble Kex2 and furin were examined. R(1)-eglin itself was a modest inhibitor of Kex2, with a K(a) of approximately 10(7) M(-)(1). Substituting Arg (in R(4)R(1)-eglin) or Met (in M(4)R(1)-eglin) for Pro(42) at P(4) created potent Kex2 inhibitors exhibiting K(a) values of approximately 10(9) M(-)(1). R(4)R(1)-eglin inhibited furin with a K(a) of 4.0 x 10(8) M(-)(1). Introduction of Lys at P(1), in place of Arg in R(4)R(1)-eglin reduced affinity only approximately 3-fold for Kex2 but 15-fold for furin. The stabilities of enzyme-inhibitor complexes were characterized by association and dissociation rate constants and visualized by polyacrylamide gel electrophoresis. R(4)R(1)-eglin formed stable 1:1 complexes with both Kex2 and furin. However, substitution of Lys at P(2) in place of Thr(44) resulted in eglin variants that inhibited both Kex2 and furin but which were eventually cleaved (temporary inhibition). Surprisingly, R(6)R(4)R(1)-eglin, in which Arg was substituted for Gly(40) in R(4)R(1)-eglin, exhibited stable, high-affinity complex formation with Kex2 (K(a) of 3.5 x 10(9) M(-)(1)) but temporary inhibition of furin. This suggests that enzyme-specific interactions can alter the conformation of the reactive site loop, converting a permanent inhibitor into a substrate. Eglin variants offer possible avenues for affinity purification, crystallization, and regulation of proprotein processing proteases.  相似文献   

10.
Radioligand binding studies with the water-soluble cannabinoid [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) have revealed a saturable high-affinity site in brain that is specific for cannabinoids. To determine whether endogenous compounds of brain might act upon the site physiologically, we sought inhibitors in extracts of brain. An endogenous inhibitor has been purified to homogeneity by acid extraction of rat brain followed by adsorption to a reverse-phase matrix and gel filtration chromatography. The purified inhibitor has a subunit molecular mass of 14,500 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Inhibition of [3H]TMA binding by the purified inhibitor occurs with a Ki of about 4 nM in a noncompetitive manner. The molecular weight, abundance, and extraction properties are the same as a species of myelin basic protein (MBP). The MBPs of rat, rabbit, pig, and cow also inhibit [3H]TMA binding noncompetitively with similar potencies. The purified inhibitor comigrates with rat MBP-small form on SDS-PAGE, has a similar amino acid composition, and is recognized by antibody directed against MBP. Studies of fragments of rabbit MBP suggest that the determinants of affinity for the [3H]TMA site are contained primarily within the C-terminal half of the rabbit MBP. Synthetic polycationic peptides such as polylysine and polyarginine mimic the effects of MBP, suggesting that the high-affinity cannabinoid binding site recognizes large polycations. The identification of the endogenous inhibitor of [3H]TMA binding as MBP suggests that MBP interacts physiologically with the high-affinity cannabinoid site.  相似文献   

11.
p-nitrophenyl phosphatase activity is high in porcine neutrophils and was found in plasma membrane and granule fractions isolated from sucrose density gradients after nitrogen cavitation to disrupt the cells. Very little activity was found in the cytosol. The enzyme has optimum activity at alkaline pHs with a pH optimum of 10.3. The pH profile was fairly broad with activity still remaining at physiological pH. Orthovanadate was shown to be a potent competitive inhibitor of the enzyme with a Ki of 14 microM. Phosphate also inhibited but at millimolar concentrations and the two inhibitors bind in a mutually exclusive fashion. Evidence from experiments using divalent ion chelators and zinc ions suggested that the phosphatase is a zinc metalloenzyme. Beryllium was found to be a very potent, non-competitive inhibitor of the neutrophil enzyme (Ki = 1.1 microM). Levamisole and theophylline were both shown to be uncompetitive inhibitors of the porcine phosphatase (Ki = 0.2 mM and 1.2 mM respectively). The neutrophil phosphatase was inhibited by L-homoarginine but unaffected by L-phenylalanine and L-glutamate.  相似文献   

12.
Xiang Y  Moss B 《Journal of virology》2003,77(4):2623-2630
Some poxviruses and their mammalian hosts encode homologous proteins that bind interleukin-18 (IL-18) with high affinity and inhibit IL-18-mediated immune responses. MC54L, the IL-18 binding protein of the human poxvirus that causes molluscum contagiosum, is unique in having a C-terminal tail of nearly 100 amino acids that is dispensable for IL-18 binding. When recombinant MC54L was expressed and purified via a C-terminal six-histidine tag, a shorter fragment was detected in addition to the full-length protein. This C-terminal fragment resulted from the cleavage of MC54L by cellular furin, as it was greatly diminished when furin was specifically inhibited or when a furin-deficient cell line was used for expression. Furthermore, the N- and C-terminal fragments of MC54L were generated by cleavage of the recombinant protein with furin in vitro. The furin cleavage site was mapped within a 32-amino-acid segment that is C terminal to the IL-18 binding domain. Full-length MC54L, but not the N-terminal IL-18 binding fragment, bound to cells and to purified heparin and other glycosaminoglycans that are commonly found on the cell surface and in the extracellular matrix. MC54L bound to heparin with a nanomolar K(d) and could simultaneously bind to IL-18. Their different glycosaminoglycan and cell binding properties may allow the long and short forms of MC54L to inactivate IL-18 near the site of infection and at more distal locations, respectively.  相似文献   

13.
A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  相似文献   

14.
A Tamanini  G Berton  G Cabrini 《Enzyme》1991,45(3):97-108
The catalytic subunit of cAMP-dependent protein kinase (EC 2.7.1.37) was purified for the first time from human placenta by DEAE-cellulose and HTP chromatography. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed a single band of average molecular weight of 42 kDa (SEM = 0.52). Kinetic experiments showed a Km for ATP of 12.6 +/- 1.2 mumol/l, for histone II-AS of 1.3 +/- 0.05 mg.ml-1, for kemptide of 11.4 +/- 4.4 mumol/l. The synthetic inhibitor IP20-amide showed a competitive mechanism of inhibition with a Ki of 5.0 nmol/l. The protein kinase inhibitors H7 and H9 showed an apparent Ki of 8.3 and 4.9 mumol/l respectively. Preparative isoelectric focusing revealed the presence of 5 different isoforms with an average pI of 6.17, 6.70, 7.15, 7.67, 8.9.  相似文献   

15.
We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.  相似文献   

16.
A novel serine proteinase inhibitor, DgTI, was purified from Dioclea glabra seeds by acetone precipitation, and ion-exchange and reverse phase chromatography. The inhibitor belongs to the Bowman-Birk family, and its primary sequence, determined by Edman degradation and mass spectrometry, of 67 amino acids is: SSGPCCDRCRCTKSEPPQCQCQDVRLNSCHSACEACVCSHSMPGLCSCLDITHFCHEPCKSSGDDED++ +. Although two reactive sites were determined by susceptibility to trypsin (Lys(13) and His(40)), the inhibitory function was assigned only to the first site. The inhibitor forms a 1:1 complex with trypsin, and Ki is 0.5 x 10(-9) M. Elastase, chymotrypsin, kallikreins, factor Xa, thrombin, and plasmin were not inhibited. By its properties, DgTI is a Bowman-Birk inhibitor with structural and inhibitory properties between the class of Bowman-Birk type I (with a fully active second reactive site), and Bowman-Birk type II (devoid of second reactive site).  相似文献   

17.
The contribution of the P1' residue at the first reactive site of peanut protease inhibitor B-III to the inhibition was analyzed by replacement of the P1' Arg(11) with other amino acids (Arg, Ser, Ala, Leu, Phe, Asp) after selective modification of the second reactive site. The Arg derivative had the same trypsin inhibitory activity as the native inhibitor (Ki = 2 X 10(-9) M). The Ser derivative inhibited more weakly (Ki = 2 X 10(-8) M). The Ala and Leu derivatives inhibited trypsin very weakly (Ki = 2 X 10(-7) M and 4 X 10(-7) M, respectively), and the Phe and Asp derivatives not at all. These results suggest that the P1' arginine residue is best for inhibitory activity at the first reactive site of B-III, although it has been suggested that a P1' serine residue at the reactive site is best for inhibitory activity of Bowman-Birk type inhibitors.  相似文献   

18.
The extracellular matrix surrounding mammalian oocytes plays important roles in fertilization and is known as the zona pellucida (ZP). The ZP consists of three glycoproteins, ZPA, ZPB, and ZPC, which contain homologous regions known as ZP domains. The ZP domain is also found in many other secretory glycoproteins. Putative transmembrane domains present at the C-termini of ZP glycoprotein precursors are removed as the proteins proceed through the secretory pathway. However, the details of this processing have been unclear. In particular, the precise locations of the C-termini of mammalian zona proteins have not yet been determined. In this study, the C-terminal residues of porcine ZPB and ZPC were identified as Ala-462 and Ser-332, respectively, by mass spectrometry of C-terminal polypeptide fragments of these proteins. These results suggest that ZPB is processed at its furin consensus site, whereas ZPC is processed N-terminal to the furin consensus site. In addition, the analyses of porcine ZPB and ZPC fragments revealed that disulfide bonds within the ZP domains are divided into two groups, suggesting that the ZP domain consists of two subdomains.  相似文献   

19.
The ubiquitous serine endoprotease furin has been implicated in the activation of bacterial toxins and viral glycoproteins as well as in the metastatic progression of certain tumors. Although high molecular mass bioengineered serpin inhibitors have been well characterized, no small nontoxic nanomolar inhibitors have been reported to date. Here we describe the identification of such inhibitors using positional scanning amidated and acetylated synthetic l- and d-hexapeptide combinatorial libraries. The results indicated that l-Arg or l-Lys in all positions generated the most potent inhibitors. However, further investigation revealed that the peptide terminating groups hindered inhibition. Consequently, a series of non-amidated and acetylated polyarginines was synthesized. The most potent inhibitor identified, nona-l-arginine, had a K(i) for furin of 40 nm. The K(i) values for the related convertases PACE4 and prohormone convertase-1 (PC1) were 110 nm and 2.5 microm, respectively. Although nona-l-arginine was cleaved by furin, the major products after a 6-h incubation at 37 degrees C were hexa- and hepta-l-arginines, both of which retained the great majority of their potency and specificity against furin. Hexa-d-arginine was as potent and specific a furin inhibitor as hexa-l-arginine (K(i) values of hexa-d-arginine: 106 nm, 580 nm, and 13.2 microm for furin, PACE4, and PC1, respectively). PC2 was not inhibited by any polyarginine tested; indeed, PC2 showed an increase in activity of up to 140% of the control in the presence of l-polyarginines. Data are also presented that show extended subsite recognition by furin and PC2. Whereas N-terminal acetylation was found to reduce the inhibitory potency of the l-hexapeptide LLRVKR against furin 8-fold, C-terminal amidation reduced the potency < 2-fold. Conversely, N-terminal acetylation increased the potency against PC2 nearly 3-fold, whereas C-terminal amidation of the same peptide increased the potency by a factor of 1.6. Our data indicate that non-acetylated, poly-d-arginine-derived molecules may represent excellent lead compounds for the development of therapeutically useful furin inhibitors.  相似文献   

20.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号