首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune responses in proestrus females are not altered after trauma-hemorrhage, whereas they are markedly depressed in males. Elevated levels of female sex steroids appear to be responsible for maintaining immune responses but it remains unknown, whether estrogen per se is responsible. To study this, proestrus female C3H/HeN mice were subjected to laparotomy (i.e., soft tissue trauma) and hemorrhagic shock (35+/-5 mmHg for 90 min, then resuscitated) or sham operation and received the estrogen receptor antagonist EM-800 or vehicle during resuscitation. Two hours following trauma-hemorrhage, splenocyte proliferation, IL-2, IL-3, IFN-gamma release, and splenic macrophage IL-6 release was maintained in vehicle-treated females. In EM-800-treated females, however, these immune parameters were significantly depressed. Following trauma-hemorrhage, Kupffer cell TNF-alpha release and circulating TNF-alpha were increased only in EM-800-treated females. These findings indicate that the ability of proestrus females to maintain immune function following trauma-hemorrhage is estrogen-dependent and mediated via estrogen receptors.  相似文献   

2.
Tissue hypoxia is a common sequel of trauma-hemorrhage but can occur even without blood loss under hypoxic conditions. Although hypoxia is known to upregulate Kupffer cells (KC) to release cytokines, the precise mechanism of release remains unknown. We hypothesized that Src family kinases play a role in mediating KC mitogen-activated protein kinase (MAPK) signaling and their cytokine production after hypoxia. Male C3H/HeN mice received either Src inhibitor PP1 (1.5 mg/kg body wt) or vehicle 1 h before hypoxia. KCs were isolated 1 h after hypoxia, lysed, and immunoblotted with antibodies to Src, p38, ERK1/2, or JNK proteins. In addition, KCs were cultured to measure interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production. Hypoxia produced a significant increase in KC Src and MAPK (p38, ERK, JNK) activity compared with normoxic controls. This was associated with an increase in IL-6 and MCP-1 production. Treatment with PP1 abolished the increase in KC Src activation as well as p38 activity. However, PP1 did not prevent the increase in KC ERK1/2 or JNK phosphorylation. Furthermore, administration of PP1 prevented the hypoxia-induced increase in IL-6 but not MCP-1 release by KC. Additional in vitro results suggest that p38 but not ERK1/2 or JNK are critical for KC IL-6 production. In contrast, the production of MCP-1 by KC was found to be independent of MAPK. Thus hypoxia increases KC IL-6 production by p38 MAPK activation via Src-dependent pathway. Src kinases may therefore be a novel therapeutic target for preventing immune dysfunction following low-flow conditions in trauma patients. innate immunity; macrophages; cell signaling  相似文献   

3.
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.  相似文献   

4.
Recent studies indicate that young female proestrus mice show an enhanced immune response following trauma-haemorrhage, as opposed to the immunodepression observed in males of comparable age. Testosterone is suggested as the cause of immunodepression in males, whereas oestradiol seems to be responsible for the enhanced immune response in females, however, sex hormone levels decrease with age. To determine if the sexual dimorphism in immune responses observed in young mice following trauma-haemorrhage changes with age, young (2-3 months) and aged (18-19 months) male and female CBA/J NIA mice were subjected to soft-tissue trauma (laparatomy) and haemorrhage (35+5 mmHg for 90 min and fluid resuscitation) or sham operation. Mice were killed 24 h later, and whole blood, as well as splenic and peritoneal macrophages (Mstraight phi) obtained. Plasma 17beta-oestradiol and free testosterone decreased in aged females and males, respectively. Mstraight phi from young females had enhanced IL-1beta and suppressed IL-10 production following trauma-haemorrhage, while aged females had unchanged production IL-1beta and IL-6 production and enhanced IL-10 release. In contrast, IL-1beta and IL-6 production by Mbeta from young males was suppressed and IL-10 production enhanced following trauma-haemorrhage, whereas Mstraight phi from aged males produced elevated levels of IL-1beta and IL-6 and suppressed levels of IL-10 following trauma-haemorrhage. Thus, the gender-related changes in the immune response to trauma-haemorrhage were reversed in aged mice.  相似文献   

5.
Studies have shown gender dimorphism in cell-mediated immune responses following haemorrhage, with depressed responses in young males and maintained or enhanced responses in proestrus females. However, it remains unknown whether or not the sexually dimorphic immune response to haemorrhage provides any protection against a subsequent in vivo polymicrobial septic challenge. To study this, male and proestrus female C3H/HeN mice were subjected to haemorrhage (35+/-5 mmHg for 90 min followed by fluid resuscitation) or sham operation. Twenty-four hours thereafter, all mice were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP) and survival was assessed over a 10 day period. Haemorrhage prior to CLP significantly increased mortality in males as compared to shams. In contrast, mortality in females following CLP was comparable between the sham and haemorrhage groups. Plasma levels of interleukin (IL-)6, tumour necrosis factor (TNF)-alpha and prostaglandin E(2)(PGE(2)) at 5 h after CLP were significantly increased in males subjected to prior haemorrhage. In contrast, plasma levels of IL-6 and TNF-alpha in females did not increase under such conditions. PGE(2)levels were comparable in males and females following CLP, however prior haemorrhage significantly reduced PGE(2)levels in females, whereas no change was observed in males. Liver and splenic expression of cyclooxygenase-2 protein paralleled the changes in plasma PGE(2). Female sex hormones, therefore, appear to play an important role not only in maintaining immune function following haemorrhage, but also provide a survival advantage against subsequent septic challenge.  相似文献   

6.
IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.  相似文献   

7.
Although studies have demonstrated that trauma markedly alters the bone marrow immune responses, sex and age are crucial determinants under such conditions and have not been extensively examined. To study this, 21- to 27-day-old (premature), 6- to 8-wk-old (mature), and 20- to 24-mo-old (aged) male and female (proestrus) C3H/HeN mice were sham operated or subjected to trauma (i.e., midline laparotomy) and hemorrhagic shock (30 +/- 5 mmHg for 90 min) followed by fluid resuscitation. Twenty-four hours after resuscitation, bone marrow cells were harvested. Trauma-hemorrhage induced an increased number of the early pluripotent stem cell-associated bone marrow cell subsets (Sca1(+)CD34(-)CD117(+/-)lin(+/-)) in young mice. The CD117(+) proportion of these cell subsets increased in mature proestrus females, but not in males. Aged males displayed significant lower numbers of Sca1(+)CD34(-)CD117(+/-)lin(+/-) cells compared with young male mice. Trauma-hemorrhage also increased development of granulocyte/macrophage progenitor cells (CD11b(+)Gr-1(+)). Proliferative responses to granulocyte macrophage colony-stimulating factor were maintained in mature and aged proestrus females, but decreased in young mice and mature males. Augmented differentiation into monocyte/macrophage lineage in mature and aged proestrus females was observed and associated with the maintained release of TNF-alpha and IL-6. Conversely, increased IL-10 and PGE(2) production was observed in the male trauma-hemorrhage groups. Thus, sex- and age-specific effects in bone marrow differentiation and immune responses after trauma-hemorrhage occur, which are likely to contribute to the sex- and age-related differences in the systemic immune responses under such conditions.  相似文献   

8.
Recent research has shown that the occurrence of gender disparity in liver cancer associated with sex differences in MyD88-dependent IL-6 production, but the role of this signaling pathway in sex differences of non-alcoholic steatohepatitis (NASH) remains unknown. To investigate the effects of sex hormone-specific intervention on pathology and progression of NASH, and on the inflammatory TLR-MyD88-IL-6 signaling pathway NASH was modeled in C57/BL6 mice by feeding a methionine and choline-deficient (MCD) diet for 4 weeks. Male mice were subjected to sex hormone-related interventions such as orchidectomy, and orchidectomy combined with administration of either testosterone propionate or estradiol benzoate. Next, the degree of non-alcoholic fatty liver disease activity score (NAS), serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and the expression level of MyD88 and IL-6, were compared between these groups. Males developed more serious inflammatory problems and had a higher NAS than the females. Sex-specific intervention in male mice by orchidectomy reduced NAS, ALT, and AST, and the expression level of MyD88 and IL-6. But administration of exogenous androgen had no influence on either NAS or the expression of ALT, AST, MyD88, and IL-6. On the other hand, exogenous estrogen could alleviate the pathological damage caused by NASH, as well as reduce NAS, ALT and AST, and the expression of MyD88 and IL-6. The result show different sex hormone-related interventions affected the severity of NASH, possibly by modulating the level of sex hormones and regulating the TLR-MyD88-IL-6 signaling pathway.  相似文献   

9.
The TLR5 agonist flagellin induces innate and adaptive immune responses in a MyD88-dependent manner and is under development as a vaccine adjuvant. In vitro studies indicate that, compared with other bacteria-derived adjuvants, flagellin is a very potent activator of proinflammatory gene expression and cytokine production from cells of nonhemopoietic origin. However, the role of nonhemopoietic cells in promoting flagellin-induced immune responses in vivo remains unclear. To investigate the relative contributions of the nonhemopoietic (radioresistant) and the hemopoietic (radiosensitive) compartments, we measured both innate and adaptive immune responses of flagellin-treated MyD88 radiation bone marrow chimeras. We observed that radiosensitive and radioresistant cells played distinct roles in the innate response to flagellin, with the radiosensitive cells producing the majority of the TNF-alpha, IL-12, and IL-6 cytokines and the radioresistant cells most of the KC, IP-10, and MCP-1 cytokines. Direct activation of either compartment alone by flagellin initiated dendritic cell costimulatory molecule up-regulation and induced a significant humoral immune response to the protein itself as well as to coinjected OVA. However, robust humoral responses were only observed when MyD88 was present in both cell compartments. Further studies revealed that hemopoietic and nonhemopoietic expression of the cytokines TNF-alpha and IL-6, but not IL-1, played an important role in promoting flagellin-induced Ab responses. Thus, in vivo both radioresistant and hemopoietic cells play key nonredundant roles in mediating innate and adaptive immune responses to flagellin.  相似文献   

10.
The mechanism of interleukin (IL)-10-mediated inhibition of tumor necrosis factor (TNF)-alpha production was studied by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. IL-10 inhibited TNF-alpha production transiently at an early stage after LPS stimulation. IL-10 inhibited the activation of nuclear factor (NF)-kappaB, p38 and stress-activated protein kinase (SAPK) in LPS-stimulated RAW 264.7 cells. Although the level of MyD88 protein increased in response to LPS, IL-10 prevented the LPS-induced MyD88 augmentation. There was no significant difference in the MyD88 mRNA expression between the cells pretreated with or without IL-10 in response to LPS. Therefore, IL-10 was suggested to inhibit LPS-induced TNF-alpha production via reduced MyD88 expression.  相似文献   

11.
The opportunistic human pathogen Pseudomonas aeruginosa causes rapidly progressive and tissue-destructive infections, such as hospital-acquired and ventilator-associated pneumonias. Innate immune responses are critical in controlling P. aeruginosa in the mammalian lung, as demonstrated by the increased susceptibility of MyD88(-/-) mice to this pathogen. Experiments conducted using bone marrow chimeric mice demonstrated that radio-resistant cells participated in initiating MyD88-dependent innate immune responses to P. aeruginosa. In this study we used a novel transgenic mouse model to demonstrate that MyD88 expression by epithelial cells is sufficient to generate a rapid and protective innate immune response following intranasal infection with P. aeruginosa. MyD88 functions as an adaptor for many TLRs. However, mice in which multiple TLR pathways (e.g., TLR2/TLR4/TLR5) are blocked are not as compromised in their response to P. aeruginosa as mice lacking MyD88. We demonstrate that IL-1R signaling is an essential element of MyD88-dependent epithelial cell responses to P. aeruginosa infection.  相似文献   

12.
Hypoxia induces a cerebral inflammatory response, which contributes to brain injury. Inflammasomes are complex intracellular molecular structures that initiate the inflammatory cascade. Caspase-1 and interleukin 1-β (IL-1β), have been established as markers of inflammasome activation. Src kinase, a cytosolic non-receptor protein tyrosine kinase, is linked to cell proliferation and differentiation and is up regulated during hypoxia. The role of Src kinase in the above pathway is not fully understood. The present study tests the hypothesis that inhibition of Src kinase, by a selective inhibitor, PP2, will prevent the activation of caspase-1 and production of IL-1β acutely, as well as at 1 and 15 days after hypoxia in the cerebral cortex of the newborn piglet. Piglets were divided into: Normoxia (Nx), Hypoxia acute (Hx), Hypoxia-day 1 (Hx-day 1), and Hypoxia day 15 (Hx-day 15). Piglets pretreated with Src kinase inhibitor, PP2, 1 mg/kg IV, 30 min prior to hypoxia were divided into: Hypoxia acute (Hx + PP2), 1 day (Hx + PP2-day 1), and day 15 (Hx + PP2-day 15). Hypoxia was induced by exposing the piglets to an FiO2 of 0.07 for 1 hour. Caspase-1 activity and expression were determined with spectrophotometry and Western blot respectively, while IL-1β levels were measured by solid phase ELISA. Caspase-1 activation was achieved immediately (within 1 h) after hypoxia and persisted for 15 days. IL-1β level was also increased after hypoxia reaching a maximum level at 24 h following hypoxia and returned to baseline by 15 days. Administration of PP2 attenuated the activity acutely, but not the expression of the caspase-1. IL-1β level at 24 h after hypoxia returned to baseline in piglets that were pretreated with PP2. We provide evidence that inhibition of Src kinase in the acute phase after hypoxia involves changes in the production or processing of caspase-1 subunits. Our data suggest that Src kinase mediates hypoxia-induced caspase-1 activation in the cerebral cortex of newborn piglets. Inhibition of Src kinase may attenuate the neuroinflammatory response and could represent a potential target for neuroprotection after hypoxic injury.  相似文献   

13.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

14.
Listeria monocytogenes (LM), a facultative intracellular Gram-positive bacterium, often causes lethal infection of the host. In this study we investigated the molecular mechanism underlying LM eradication in the early phase of infection. Upon infection with LM, both IL-12 and IL-18 were produced, and then they synergistically induced IFN-gamma production, leading to normal LM clearance in the host. IFN-gamma knockout (KO) mice were highly susceptible to LM infection. IL-12/IL-18 double knockout mice were also highly susceptible. Their susceptibility was less than that of IFN-gamma KO mice, but more than that of single IL-12 or IL-18 KO mice. Mice deficient in myeloid differentiation factor 88 (MyD88), an essential adaptor molecule used by signal transduction pathways of all members of the Toll-like receptor (TLR) family, showed an inability to produce IL-12 and IFN-gamma following LM infection and were most susceptible to LM. Furthermore, MyD88-deficient, but not IFN-gamma-deficient, Kupffer cells could not produce TNF-alpha in response to LM in vitro, indicating the importance of MyD88-dependent TNF-alpha production for host defense. As TLR2 KO, but not TLR4 KO, mice showed partial impairment in their capacity to produce IL-12, IFN-gamma, and TNF-alpha, TLR2 activation partly contributed to the induction of IL-12-mediated IFN-gamma production. These results indicated a critical role for TLRs/MyD88-dependent IL-12/TNF-alpha production and for IL-12- and IL-18-mediated IFN-gamma production in early phase clearance of LM.  相似文献   

15.
Host resistance to the intracellular protozoan Leishmania major is highly dependent on IL-12 production by APCs. Genetically resistant C57BL/6 mice develop IL-12-mediated Th1 immune response dominated by IFN-gamma and exhibit only small cutaneous lesions that resolve spontaneously. In contrast, because of several genetic differences, BALB/c mice develop an IL-4-mediated Th2 immune response and a chronic mutilating disease. Myeloid differentiation marker 88 (MyD88) is an adaptator protein that links the IL-1/Toll-like receptor family to IL-1R-associated protein kinase. Toll-like receptors recognize pathogen associated molecular patterns and are crucially implicated in the induction of IL-12 secretion by APC. The role of MyD88 protein in the development of protective immune response against parasites is largely unknown. Following inoculation of L. major, MyD88(-/-) C57BL/6 mice presented large footpad lesions containing numerous infected cells and frequent mutilations. In response to soluble Leishmania Ag, cells from lesion-draining lymph node showed a typical Th2 profile, similar to infected BALB/c mice. IL-12p40 plasma level collapses in infected MyD88(-/-) mice compared with infected wild-type C57BL/6 mice. Importantly, administration of exogenous IL-12 rescues L. major-infected MyD88(-/-) mice, demonstrating that the susceptibility of these mice is a direct consequence of IL-12 deficiency. In conclusion, MyD88-dependent pathways appear essential for the development of the protective IL-12-mediated Th1 response against the Leishmania major parasite. In absence of MyD88 protein, infected mice develop a nonprotective Th2 response.  相似文献   

16.
A gender dimorphic immune response has beenobserved after trauma and severe hemorrhage, a condition believed to beassociated with tissue hypoxia. Although studies have shown thathypoxemia per se in males causes a systemic inflammatory response, itis unclear if the inflammatory response to hypoxemia exhibits gender dimorphic characteristics. To study this, male and female C3H/HeN micein the proestrus state of the estrous cycle were subjected to hypoxemia(95% N2-5% O2) or sham hypoxemia (room air)for 60 min. Later (2 h), plasma interleukin (IL)-6 and tumor necrosis factor (TNF)- levels were determined along with splenic immune responses. Plasma IL-6 and TNF- concentrations after hypoxemia weresignificantly increased in males but not in females. Splenocyte proliferation was depressed in males after hypoxemia but not in females. A shift toward an immunosuppressive Th-2 cytokine profile wasobserved in males after hypoxemia [decreased interferon- (Th-1) andincreased IL-10 (Th-2)], whereas no such shift was observed infemales. Splenic macrophage IL-6, IL-10, and IL-12 production weresuppressed in males after hypoxemia; however, such suppression was notobserved in females. These findings therefore indicate that a genderdimorphic immune response also exists after hypoxemia in the absence ofblood loss and tissue trauma, similar to trauma-hemorrhage.Furthermore, because no systemic inflammatory response or alterationsin T lymphocyte or macrophage functions are observed in proestrusfemales but such parameters are markedly altered after severe hypoxemiain males, these studies indicate that proestrus females can toleratehypoxemia better than males.

  相似文献   

17.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

18.
Kupffer cells have been reported as a major source of proinflammatory cytokines (i.e. IL-6, TNF-alpha), which have been implicated in the pathogenesis of trauma-hemorrhage. Previous studies have shown a protective effect of 17beta-estradiol on immune function and physiological responses following trauma-hemorrhage. In this study, we investigated whether 17beta-estradiol has a direct effect on Kupffer cell cytokine production following trauma-hemorrhage. Male Sprague-Dawley rats were subjected to trauma (midline laparotomy) and hemorrhage (35-40 mmHg for 90 min followed by fluid resuscitation) or sham operation. Two hours later, Kupffer cells were isolated and cultured with 17beta-estradiol in the presence and absence of lipopolysaccharide stimulation. Kupffer cell IL-6 and TNF-alpha production increased following trauma-hemorrhage. Incubation with 17beta-estradiol attenuated the production of IL-6 by cells from both sham and trauma-hemorrhage animals in a dose-dependent manner. The suppression of IL-6 production by 17beta-estradiol was paralleled by a decrease in mRNA levels. In contrast to IL-6, the effects of 17beta-estradiol on TNF-alpha production were minimal. In conclusion, these results indicate the direct downregulation of Kupffer cell IL-6 production by 17beta-estradiol at a molecular level, which might explain in part the previously observed salutary effects of estradiol treatment following trauma-hemorrhage.  相似文献   

19.

Background

Previous studies by us and other have provided evidence that leukocytes play a critical role in the development of diabetic retinopathy, suggesting a possible role of the innate immune system in development of the retinopathy. Since MyD88 is a convergence point for signaling pathways of the innate immune system (including Toll-Like Receptors (TLRs) and interleukin-1ß (IL-1ß)), the purpose of this study was to assess the role of MyD88 and its dependent pathways on abnormalities that develop in retina and white blood cells related to diabetic retinopathy.

Methods

C57BL/6J mice were made diabetic with streptozotocin. Chimeric mice were generated in which MyD88-dependent pathways were deleted from bone marrow-derived only. Mice were sacrificed at 2 mos of diabetes for assessment of, leukostasis, albumin accumulation in neural retina, leukocyte-mediated killing of retinal endothelial cells, and cytokine/chemokine generation by retinas of diabetic mice in response to TLR agonists,

Results

IL-6 and CXCL1 were generated in retinas from diabetic (but not nondiabetic mice) following incubation with Pam3CysK/TLR2, but incubation with other TLR ligands or IL-1ß did not induce cytokine production in retinas from nondiabetic or diabetic mice. Diabetes-induced abnormalities (leukostasis, ICAM-1 expression on the luminal surface of the vascular endothelium, retinal superoxide generation) were significantly inhibited by removing either MyD88 or the signaling pathways regulated by it (TLRs 2 and 4, and IL-1ß) from bone marrow-derived cells only. Leukocyte-mediated killing of endothelial cells tended to be decreased in the marrow-derived cells lacking TLR2/4, but the killing was significantly exacerbated if the marrow cells lacked MyD88 or the receptor for IL-1ß (IL-1ßr).

Conclusions

MyD88-dependent pathways play an important role in the development of diabetes-induced inflammation in the retina, and inhibition of MyD88 might be a novel target to inhibit early abnormalities of diabetic retinopathy and other complications of diabetes.  相似文献   

20.
Interaction between commensal bacteria and intestinal epithelial cells (i-ECs) via TLRs is important for intestinal homeostasis. In this study, we found that the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta intestinal intraepithelial lymphocytes (i-IELs) were significantly decreased in MyD88-deficient (-/-) mice. The expression of IL-15 by i-ECs was severely reduced in MyD88(-/-) mice. Introduction of IL-15 transgene into MyD88(-/-) mice (MyD88(-/-) IL-15 transgenic mice) partly restored the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs. The i-IEL in irradiated wild-type (WT) mice transferred with MyD88(-/-) bone marrow (BM) cells had the same proportions of i-IEL as WT mice, whereas those in irradiated MyD88(-/-) mice transferred with WT BM cells showed significantly reduced proportions of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs, as was similar to the proportions found in MyD88(-/-) mice. However, irradiated MyD88(-/-) IL-15 transgenic mice transferred with WT BM cells had increased numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta subsets in the i-IEL. These results suggest that parenchymal cells such as i-ECs contribute to the maintenance of CD8alphaalpha TCRalphabeta and gammadelta i-IELs at least partly via MyD88-dependent IL-15 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号