首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Migration and proliferation of smooth muscle cells are key to a number of physiological and pathological processes, including wound healing and the narrowing of the vessel wall. Previous work has shown links between inflammatory stimuli and vascular smooth muscle cell proliferation and migration through mitogen-activated protein kinase (MAPK) activation, although the molecular mechanisms of this process are poorly understood. Here we report that tribbles-1, a recently described modulator of MAPK activation, controls vascular smooth muscle cell proliferation and chemotaxis via the Jun kinase pathway. Our findings demonstrate that this regulation takes place via direct interactions between tribbles-1 and MKK4/SEK1, a Jun activator kinase. The activity of this kinase is dependent on tribbles-1 levels, whereas the activation and the expression of MKK4/SEK1 are not. In addition, tribbles-1 expression is elevated in human atherosclerotic arteries when compared with non-atherosclerotic controls, suggesting that this protein may play a role in disease in vivo. In summary, the data presented here suggest an important regulatory role for trb-1 in vascular smooth muscle cell biology.  相似文献   

2.
Increased vascular smooth muscle contractility in TRPC6-/- mice   总被引:12,自引:0,他引:12       下载免费PDF全文
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.  相似文献   

3.
4.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   

5.
Calcium signalling in smooth muscle   总被引:14,自引:0,他引:14  
Wray S  Burdyga T  Noble K 《Cell calcium》2005,38(3-4):397-407
Calcium signalling in smooth muscles is complex, but our understanding of it has increased markedly in recent years. Thus, progress has been made in relating global Ca2+ signals to changes in force in smooth muscles and understanding the biochemical and molecular mechanisms involved in Ca2+ sensitization, i.e. altering the relation between Ca2+ and force. Attention is now focussed more on the role of the internal Ca2+ store, the sarcoplasmic reticulum (SR), global Ca2+ signals and control of excitability. Modern imaging techniques have shown the elaborate SR network in smooth muscles, along with the expression of IP3 and ryanodine receptors. The role and cross-talk between these two Ca(2+) release mechanisms, as well as possible compartmentalization of the SR Ca2+ store are discussed. The close proximity between SR and surface membrane has long been known but the details of this special region to Ca2+ signalling and the role of local sub-membrane Ca2+ concentrations and membrane microdomains are only now emerging. The activation of K+ and Cl- channels by local Ca2+ signals, can have profound effects on excitability and hence contraction. We examine the evidence for both Ca2+ sparks and puffs in controlling ion channel activity, as well as a fundamental role for Ca2+ sparks in governing the period of inexcitability in smooth muscle, i.e. the refractory period. Finally, the relation between different Ca2+ signals, e.g. sparks, waves and transients, to smooth muscle activity in health and disease is becoming clearer and will be discussed.  相似文献   

6.
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).  相似文献   

7.
Calcium sparks in smooth muscle   总被引:40,自引:0,他引:40  
Local intracellular Ca2+transients, termed Ca2+ sparks, are caused by thecoordinated opening of a cluster of ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum ofsmooth muscle cells. Ca2+ sparks are activated byCa2+ entry through dihydropyridine-sensitivevoltage-dependent Ca2+ channels, although the precisemechanisms of communication of Ca2+ entry toCa2+ spark activation are not clear in smooth muscle.Ca2+ sparks act as a positive-feedback element to increasesmooth muscle contractility, directly by contributing to the globalcytoplasmic Ca2+ concentration([Ca2+]) and indirectly by increasingCa2+ entry through membrane potential depolarization,caused by activation of Ca2+ spark-activatedCl channels. Ca2+ sparks also have aprofound negative-feedback effect on contractility by decreasingCa2+ entry through membrane potential hyperpolarization,caused by activation of large-conductance, Ca2+-sensitiveK+ channels. In this review, the roles of Ca2+sparks in positive- and negative-feedback regulation of smooth musclefunction are explored. We also propose that frequency and amplitudemodulation of Ca2+ sparks by contractile and relaxantagents is an important mechanism to regulate smooth muscle function.

  相似文献   

8.
Calcium release in smooth muscle   总被引:16,自引:0,他引:16  
H Karaki  G B Weiss 《Life sciences》1988,42(2):111-122
In smooth muscle, maintenance of the contractile response is due to Ca2+ influx through two types of Ca2+ channel, a voltage-dependent Ca2+ channel and a receptor-linked Ca2+ channel. However, a more transient contraction can be obtained by release of Ca2+ from a cellular store, possibly the sarcoplasmic reticulum. In spike generating smooth muscle (e.g., guinea-pig taenia caeci), spike discharges may trigger the release of cellular Ca2+ by activating a Ca2+-induced Ca2+ release mechanism. Caffeine directly activates this mechanism in the absence of a triggered Ca2+ influx. In contrast to this, maintained depolarization may not only release but also refill the Ca2+ store. Drug-receptor interactions also release Ca2+ from a cellular store. This release may be elicited with inositol trisphosphate produced by receptor-linked phosphoinositide turnover. In non-spike generating smooth muscle (e.g., rabbit thoracic aorta), maintained membrane depolarization does not release but, instead, fills the Ca2+ store. However, caffeine and receptor-agonists release the Ca2+ store - possibly by activating the Ca2+-induced Ca2+ release mechanism and phosphoinositide turnover, respectively. The Ca2+ store in smooth muscle is filled by Ca2+ entry through voltage dependent Ca2+ channels and also by resting Ca2+ influx in the absence of receptor-agonists. The Ca2+ entering the cells through these pathways may be accumulated by the Ca2+ store and may activate the contractile filaments.  相似文献   

9.
10.
In smooth muscle cells, the electrophysiological properties of potential-dependent calcium channels are similar to those described in other excitable cells. The calcium current is dependent on the extracellular calcium concentration; it is insensitive to external sodium removal and tetrodotoxin application. Other ions (Ba2+, Sr2+, Na+) can flow through the calcium channel. This channel is blocked by Mn2+, Co2+, Cd2+ and by organic inhibitors. The inactivation mechanism is mediated by both the membrane potential and the calcium influx. Ca2+ ions can also penetrate into the cell through receptor-operated channels. These channels show a low ionic selectivity and are generally less sensitive to organic Ca-blockers than the potential-dependent calcium channels. The finding of specific channel inhibitors as well as the study of the biochemical pathways between receptor activation and channel opening are prerequisites to further characterization of receptor-operated channels.  相似文献   

11.
12.
Reversal of the Na+/Ca2+ -exchanger (NCX) has been shown to mediate Ca2+ influx during activation of G-protein linked receptors. Functional coupling between the reverse-mode NCX and the canonical transient receptor potential channels (TRPCs) has been proposed to mediate Ca2+ influx in HEK-293 cells overexpressing TRPC3. In this communication we present evidence for similar functional coupling of NCX to endogenously expressed TRPC6 in rat aorta smooth muscle cells. Selective inhibition of reverse-mode NCX with KB-R7943 and of non-selective cation-channels with SKF-96365 abolished Ca2+ influx in response to agonist stimulation (ATP). Expression of a dominant negative TRPC6 mutant also reduced the Ca2+ influx in proportion to its transfection efficiency. Calyculin A, which is known to disrupt the junctions of the plasma membrane and sarco/endoplasmic reticulum, increased global Na+ elevations and reduced stimulated Ca2+ influx. Together our data provide evidence that localized Na+ elevations are generated by TRPC6 and drive reversal of NCX to mediate Ca2+ influx.  相似文献   

13.
14.
Apoptosis of vascular smooth muscle cells (VSMCs) plays an important role in regulating vascular remodeling during cardiovascular diseases. Apelin is the endogenous ligand for the G-protein-coupled receptor APJ and plays an important role in the cardiovascular system. However, the mechanisms of apelin on apoptosis of VSMCs have not been elucidated. Using a culture of human VSMCs as a model for the study of apoptosis, the relationship between apelin and apoptosis of human VSMCs and the signal pathway involved were investigated. Using western blotting, we confirmed that VSMCs could express APJ. To evaluate the possible role of apelin in VSMC apoptosis, we assessed its effect on apoptosis of human VSMCs. The results showed that apelin inhibited human VSMCs apoptosis induced by serum deprivation. Suppression of APJ with small-interfering RNA (siRNA) abolished the anti-apoptotic activity of apelin. Apelin increased Bcl-2 protein expression, but decreased Bax protein expression. An increase in activation of extracellular signal-regulated protein kinase (ERK) and Akt (a downstream effector of phosphatidylinositol 3-kinase) was shown after apelin stimulation. Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. LY294002 (a PI3-K inhibitor) blocked apelin-induced activation of Akt and abolished the apelin-induced antiapoptotic activity. Our study suggests that apelin suppresses serum deprivation-induced apoptosis of human VSMCs, and that the anti-apoptotic action is mediated through the APJ/PI3-K/Akt signaling pathways.  相似文献   

15.
Nitroalkene derivatives of nitro-linoleic acid (LNO2) and nitro-oleic acid (OA-NO2) are nitrated unsaturated fatty acids that can be detected in healthy human plasma, red blood cells and urine. It has been shown that nitroalkenes have potent anti-inflammatory properties in multiple disease models. In the present study, we are the first to investigate the apoptotic effects of nitroalkenes in rat aortic smooth muscle cells (RASMCs). We observed that nitroalkenes induce RASMCs apoptosis in a dose-dependent manner. In addition, nitroalkenes stimulate extrinsic caspase-8 and intrinsic caspase-9 activity to trigger the caspase-3 apoptotic signaling cascade, resulting in RASMCs death. Furthermore, the pro-apoptotic protein, Bad was upregulated and antiapoptotic protein, Bcl-xl was downregulated during nitroalkene-induced apoptosis. These results demonstrate that nitroalkenes can induce RASMCs apoptosis via stimulation of caspase activity and the regulation of apoptotic protein expression levels.  相似文献   

16.
17.
18.
Calcium diffusion in uterine smooth muscle sheets   总被引:1,自引:0,他引:1  
The potassium contracture in the longitudinal muscle of estrogen- treated rat uterus was kinetically investigated. The rates of tension development after Ca addition and relaxation after Ca removal were measured under the high-potassium depolarization. Both rates decreased with an increase in preparation thickness. The relaxation rate had only a slight dependence on temperature. On the contrary, both relaxation and contraction rates in a contraction induced by an electrical stimulation strongly depended on temperature, but not on preparation size. These results suggest that the Ca diffusion process in the extracellular space is the rate-limiting step in relaxation of Ca- dependent contracture under potassium depolarization. The diffusion model, in which the effect of the unstirred layer was considered, could quantitatively explain the experimental results. The apparent diffusion coefficient in the muscle sheet was estimated to be approximately 3 x 10(-7) cm2/s. The difference from that in aqueous solution is discussed.  相似文献   

19.
The purpose of the present work was to study the factors influencing calcium incorporation into a microsomal fraction prepared from the longitudinal smooth muscle of the guinea-pig ileum. Calcium incorporation required the presence of both ATP and Mg2+ and was unaffected by azide. It was enhanced by oxalate; this effect was pH dependent and it was maximal at pH 6.6. The relation between calcium uptake with oxalate and free Ca2+ concentration in the medium was represented by a curve with an optimum for Ca2+ equal to 3-10-5 M. The threshold concentration was comprised between 5-10-7 and 10-6 7. The optimum calcium uptake rate was 4.5 nmol Ca2+/mg protein per min. In the absence of oxalate, two distinct groups of binding sites were identified. Low affinity sites had a binding constant of 7-104 M-1 and a maximum binding capacity of 0.6-106 M-1 and a binding capacity of 33 nmol Ca2+/mg protein; their capacity was sensitive to pH changes. In the absence of oxalate, Ca2+ binding was depressed by Na+ with respect to K+ or choline. When the medium was supplemented with oxalate, the stimulation of 45Ca incorporation was barely detectable in the presence of choline+ and it was lower in a medium containing Na+ instead of K+. The subcellular distribution profiles of calcium incorporation with and without oxalate indicate the microsomal location of both activities. However, the oxalate-stimulated calcium uptake activity sedimented faster than the calcium binding activity. The subcellular distribution of marker enzyme actvities has been examined. The present results indicate that Ca2+ incorporations with and without oxalate are the result of two processes likely related to two different structures. The role of microsomal calcium uptake in excitation-contraction coupling and its modification by the activity of the sodium pump is discussed.  相似文献   

20.
Calcium binding by the vesiculate fraction of rabbit small intestine myocyte plasma membranes was studied. It was shown that the membrane fraction as well as the muscle tissue contain two types of Ca2(+)-binding sites with binding constants of 2.3-2.5 x 10(4) and 2.1-1.25 x 10(3) M-1. The number of binding sites and their affinity for Ca2+ depend on the presence in the incubation medium of Mg2+, Na+ and ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号