首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiplex-fluorescence in situ hybridization (M-FISH) was initially developed to stain human chromosomes--the 22 autosomes and X and Y sex chromosomes--with uniquely distinctive colors to facilitate karyotyping. The characteristic spectral signatures of all different combinations of fluorochromes are determined by multichannel image-analysis methods. Advantages of M-FISH include rapid analysis of metaphase spreads, even in complex cases with multiple chromosomal rearrangements, and identification of marker chromosomes. The M-FISH technology has been extended to other species, such as the mouse. Furthermore, in addition to painting probes, the method has been used with a variety of region-specific probes. M-FISH has even recently been used for 3D studies to analyze the distribution of human chromosomes in intact and preserved interphase nuclei. Hence, M-FISH has evolved into an essential tool for both clinical diagnostics and basic research. In this protocol, we describe how to use M-FISH to karyotype chromosomes, a procedure that takes approximately 14 d if new M-FISH probes have to be generated and 3 d if the M-FISH probes are ready to use.  相似文献   

2.
3.
Early, rapid and reliable diagnosis is of first priority in prenatal medicine. The combination of specific sonographic markers (e.g. nuchal translucency) and biochemical parameters in maternal serum (e.g. free beta-human chorionic gonadotropin, pregnancy-associated plasma protein A), has already dramatically improved the sensitivity of non-invasive first trimester risk screening in pregnancy. In invasive prenatal diagnosis, in addition to well-established chorionic villi short-term culture, interphase multi-colour-fluorescence in situ hybridisation (M-FISH) on uncultured amnion cells has become a reliable tool for the rapid detection of fetal aneuploidies. Interphase M-FISH applications have enabled the diagnosis of selected chromosomal abnormalities in single cells and, therefore, have also become an important diagnostic tool for preimplantation diagnosis (PGD). The development of commercially available probe sets, in particular, has led to a broad use of interphase M-FISH in prenatal and PGD diagnosis.  相似文献   

4.
Summary The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointment due to inadequate ES cell sources. Both authors contributed equally to this work.  相似文献   

5.
BACKGROUND: Routine application of multicolor fluorescence in situ hybridization (M-FISH) technology for molecular cytogenetic diagnostics has been hampered by several technical limitations. First, when using chromosome-specific painting probes, there is a limit in cytogenetic resolution of approximately 2-3 Mb, which can mask hidden structural abnormalities that have a significant clinical effect. Second, using whole chromosome painting probes, intrachromosomal rearrangements cannot be detected and the exact localization of breakpoints is often not possible. METHODS: We suggest the use of multiplex-labeled region or locus- specific probes in combination with an optimal probe design to improve the sensitivity and resolution of the M-FISH technology. To allow the application of this assay in routine diagnostics, we developed a multipurpose image analysis system. RESULTS: goldFISH was applied to the study of cryptic translocations in mental retardation patients and to the study of high-resolution breakpoint mapping in non-small cell lung cancer patients. For an individual with mental retardation, who had an apparently normal karyotype by G-banding, we detected an unbalanced translocation involving chromosomes 2 and 7. CONCLUSIONS: In combination with optimally designed probe kits, goldFISH overcomes most of the present limitations of the M-FISH technology and results in virtually 100% reliability for detecting interchromosomal and intrachromosomal rearrangements.  相似文献   

6.
Giemsa C-banding is applied for the first time inCapsicum, allowing preliminary karyotype differentiation of six diploid species. Comparison of interphase nuclei and heterochromatic C-bands reveals striking differences between taxa and contributes to their taxonomic grouping. Therefore, C-banding appears to be a powerful tool for the cytogenetics and karyosystematics of the genus. Banding patterns are characterized by the omnipresence of centromeric bands and a variable number of smaller to larger distal bands, with the addition of intercalary bands in some cases. Satellites are always C-positive. Relationships between species and possible trends of karyotype evolution are discussed, with special reference to the origin of x = 13 from x = 12 and the increase of heterochromatin, regarded as advanced features.Chromosome studies inCapsicum (Solanaceae), III. For the first and the second part seeMoscone (1990, 1993).  相似文献   

7.
Multiplex-FISH for pre- and postnatal diagnostic applications.   总被引:8,自引:0,他引:8       下载免费PDF全文
For >3 decades, Giemsa banding of metaphase chromosomes has been the standard karyotypic analysis for pre- and postnatal diagnostic applications. However, marker chromosomes or structural abnormalities are often encountered that cannot be deciphered by G-banding alone. Here we describe the use of multiplex-FISH (M-FISH), which allows the visualization of the 22 human autosomes and the 2 sex chromosomes, in 24 different colors. By M-FISH, the euchromatin in marker chromosomes could be readily identified. In cases of structural abnormalities, M-FISH identified translocations and insertions or demonstrated that the rearranged chromosome did not contain DNA material from another chromosome. In these cases, deleted or duplicated regions were discerned either by chromosome-specific multicolor bar codes or by comparative genomic hybridization. In addition, M-FISH was able to identify cryptic abnormalities in patients with a normal G-karyotype. In summary, M-FISH is a reliable tool for diagnostic applications, and results can be obtained in 相似文献   

8.
Karyotypes of the aoudad and sheep were compared on the basis of G-banded chromosomes at the 450 band level. The common G-banded karyotype showed the homology of all aoudad chromosomes (2n=58) with sheep chromosomes (2n=54) or sheep chromosome arms. The results of cytogenetic investigations suggest that in this case karyotype evolution has led to reduction in chromosome number as a result of centric fusions. The formation of the first metacentric chromosome occurred in the aoudad. The homology of the G-banding pattern in sheep and aoudad suggests the conservation in linear arrangement of genetic material. Thus comparative cytogenetics can be a useful tool in gene mapping.  相似文献   

9.
Karyotype analysis by chromosome banding is the standard method for identifying numerical and structural chromosomal aberrations in pre- and postnatal cytogenetics laboratories. However, the chromosomal origins of markers, subtle translocations, or complex chromosomal rearrangements are often difficult to identify with certainty. We have developed a novel karyotyping technique, termed spectral karyotyping (SKY), which is based on the simultaneous hybridization of 24 chromosome-specific painting probes labeled with different fluorochromes or fluorochrome combinations. The measurement of defined emission spectra by means of interferometer-based spectral imaging allows for the definitive discernment of all human chromosomes in different colors. Here, we report the comprehensive karyotype analysis of 16 samples from different cytogenetic laboratories by merging conventional cytogenetic methodology and spectral karyotyping. This approach could become a powerful tool for the cytogeneticists, because it results in a considerable improvement of karyotype analysis by identifying chromosomal aberrations not previously detected by G-banding alone. Advantages, limitations, and future directions of spectral karyotyping are discussed. Received: 4 August 1997 / Accepted: 8 September 1997  相似文献   

10.
细胞核移植技术已被证明是研究发育中核质相互关系的非常重要的手段之一,电融合技术也是近十年发展起来的新型细胞融合技术。本实验运用这两项技术,进行了鼠、兔目间核质杂交实验,小鼠8-细胞核在激活的兔去核卵母细胞中,发生了染色体超前凝聚及核膨胀,融合卵移植到小鼠输卵管4.5天后,冲洗出,有5.4%的重构卵发育到囊胚期,通过染色体检查,囊胚细胞中均为小鼠染色体,其中一个囊胚为正常小鼠核型(2 n=40,XX)。通过本实验,我们认为:鼠兔远缘核质杂交胚胎的早期发育是可能的。  相似文献   

11.
The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards.  相似文献   

12.
传统显带分析技术以每条染色体独特的显带带型为依据,提供染色体形态结构的基本信息,用于染色体核型的初步分析。然而有些染色体重排由于涉及的片断太小或具有相似的带型,用该方法难以探测或准确描绘。多元荧光原位杂交(M-FISH),光谱核型分析(SKY),FISH-显带分析技术是染色体特异的多色荧光原位杂交技术(mFISH)。它们能够探测出传统显带分析不能发现的染色体异常,提供更准确的核型。M-FISH和SKY均以组合标记的染色体涂染探针共杂交为基础,二者的不同在于观察仪器和分析方法上。它们可对中期染色体涂片进行快速准确分析,描绘复杂核型,确认标记染色体,主要用于恶性疾病的细胞遗传学诊断分析。FISH-显带分析技术以FISH技术为基础,能同时检测多条比染色体臂短的染色体亚区域。符合该定义的FISH-显带分析技术各有特点,其共同特点是都能产生DNA特异的染色体条带。这些条带有更多色彩,能提供更多信息。FISH-显带分析技术已经成功地被用于进化生物学、放射生物学以及核结构的研究,同时也被用于产前、产后以及肿瘤细胞遗传学诊断,是很有潜力的工具。  相似文献   

13.
Juliomys is a small rodent from the family Cricetidae which inhabits the Atlantic forest and forests from Argentina to eastern Brazil. The three species recognized so far have different karyotypes. In this paper, we describe a new karyotype with 2n = 32, FN = 48 found in Juliomys specimens from a high-altitude area in the Atlantic forest of southern Brazil. The karyotype was analyzed after G- and C-banding and silver staining of the nucleolus organizer regions (Ag-NOR) and its G-banding patterns were compared with those of the newly described species Juliomys ossitenuis (2n = 20, FN = 36). The 2n = 32 karyomorph presented peculiar features and was very different from those of the other species of the genus: J. pictipes (2n = 36, FN = 34), J. rimofrons (2n = 20, FN = 34) and J. ossitenuis (2n = 20, FN = 36). Differences were mostly due to centric and tandem fusions, pericentric inversion and loss of heterochromatin. The karyotype represents a powerful tool to differentiate Juliomys species and our data suggest that the karyotype described herein belongs to a new species.  相似文献   

14.
The ability to karyotype G-banded chromosome preparations is an essential skill for chromosome biologists. For this reason, the teaching of the rudiments of G banding analysis forms an integral part of the curriculum in many biology and genetics degree courses. The way in which karyotyping is usually taught involves providing the students with a photograph of G-banded chromosomes, a pair of scissors and some glue from which they can cut out the chromosomes and build the karyotype. This has the disadvantage that large amounts of time are taken in cutting and pasting and comparatively little in learning pattern recognition of individual chromosomes. In this paper we describe the development of a computer-based student practical class "KaryoLab". To the best of our knowledge, this is the first report of a teaching tool that combines instruction in cytogenetic analysis with both formative and summative feedback to the student and a virtual elimination of marking time for the tutor. Chromosome research and diagnostics will only continue while there are sufficiently motivated and trained individuals to perform it. We see the software developed here as a significant step towards training and motivating students in cytogenetics.  相似文献   

15.
Cytogenetic chromosome analysis by classical G-banding was supplemented by spectral karyotyping (SKY) in 12 cases of diffuse large B-cell lymphoma (DLBL). SKY is a fluorescence in-situ-based, genome-wide screening technique allowing identification of genetic material even in highly condensed metaphase chromosomes of poor morphology. By simultaneous hybridization of whole chromosome painting probes onto tumor chromosome spreads genetic rearrangements are visualized permitting the clarification of even complex karyotype alterations and the identification of genetic material of previously unknown origin, so-called marker chromosomes. Taking the SKY results into account, we reevaluated the G-banding karyotypes initially carried out, thus generating a more precise karyotype in ten of twelve (83%) cases investigated. In particular, thirteen chromosomal rearrangements not correctly recognized by classical cytogenetics were identified, the genetic origin of seven marker chromosomes was elucidated and three structural genetic rearrangements were redefined. We found SKY to be a valuable technique to establish a definite karyotype in addition to classical cytogenetics.  相似文献   

16.
Li Y  Cang M  Lee AS  Zhang K  Liu D 《PloS one》2011,6(1):e15947
Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.  相似文献   

17.
The Cre/loxP system is a powerful tool that has allowed the study of the effects of specific genes of interest in various biological settings. The Tyr::CreERT2 system allows for the targeted expression and activity of the Cre enzyme in the melanocyte lineage following treatment with tamoxifen, thus providing spatial and temporal control of the expression of specific target genes. Two independent transgenic mouse models, each containing a Tyr::CreERT2 transgene, have been generated and are widely used to study melanocyte transformation. In this study, we performed whole genome sequencing (WGS) on genomic DNA from the two Tyr::CreERT2 mouse models and identified their sites of integration in the C57BL/6 genome. Based on these results, we designed PCR primers to accurately, and efficiently, genotype transgenic mice. Finally, we discussed some of the advantages of each transgenic mouse model.  相似文献   

18.
We have previously generated an immortalized human fetal osteoblastic cell line (hFOB) using stably transfected temperature sensitive SV40 T-antigen (Harris et al. [1995a] J. Bone. Miner. Res. 10:178-1860). To characterize these cells for phenotypic/genotypic attributes desired for a good cell model system, we performed karyotype analysis by multicolor fluorescent in situ hybridization (M-FISH), their ability to form bone in vivo without developing cell transformation, and finally their ability to form extracellular matrix formation in vitro. The karyotype analysis of hFOB cells revealed structural or numeric anomalies involving 1-2 chromosomes. In contrast, the human osteosarcoma MG63 cells displayed multiple, and often complex, numeric, and structural abnormalities. Subcutaneous injection of hFOB cells in the presence of Matrigel into nude mice resulted in bone formation after 2-3 weeks. Electron microscopic analysis of the extracellular matrix deposited by hFOB cells in culture revealed a parallel array of lightly banded fibrils typical of the fibrillar collagens such as type I and III. These results demonstrate that the hFOB cell line has minimal chromosome abnormalities, exhibit the matrix synthetic properties of differentiated osteoblasts, and are immortalized but non-transformed cell line. These hFOB cells thus appear to be an excellent model system for the study of osteoblast biology in vitro.  相似文献   

19.
Although human and gibbons are classified in the same primate superfamily (Hominoidae), their karyotypes differ by extensive chromosome reshuffling. To date, there is still limited understanding of the events that shaped extant gibbon karyotypes. Further, the phylogeny and evolution of the twelve or more extant gibbon species (lesser apes, Hylobatidae) is poorly understood, and conflicting phylogenies have been published. We present a comprehensive analysis of gibbon chromosome rearrangements and a phylogenetic reconstruction of the four recognized subgenera based on molecular cytogenetics data. We have used two different approaches to interpret our data: (1) a cladistic reconstruction based on the identification of ancestral versus derived chromosome forms observed in extant gibbon species; (2) an approach in which adjacent homologous segments that have been changed by translocations and intra-chromosomal rearrangements are treated as discrete characters in a parsimony analysis (PAUP). The orangutan serves as an "outgroup", since it has a karyotype that is supposed to be most similar to the ancestral form of all humans and apes. Both approaches place the subgenus Bunopithecus as the most basal group of the Hylobatidae, followed by Hylobates, with Symphalangus and Nomascus as the last to diverge. Since most chromosome rearrangements observed in gibbons are either ancestral to all four subgenera or specific for individual species and only a few common derived rearrangements at subsequent branching points have been recorded, all extant gibbons may have diverged within relatively short evolutionary time. In general, chromosomal rearrangements produce changes that should be considered as unique landmarks at the divergence nodes. Thus, molecular cytogenetics could be an important tool to elucidate phylogenies in other species in which speciation may have occurred over very short evolutionary time with not enough genetic (DNA sequence) and other biological divergence to be picked up.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

20.
This paper describes an efficient technique for the production of metaphase spreads from single blastomeres biopsied from four-cell preimplantation mouse embryos. The karyotype obtained by chromosomal analysis of single biopsied cells is shown to be fully predictive of subsequent fetal karyotype. The data in this study also demonstrate that the entire process of embryo biopsy and karyotypic analysis of biopsied blastomeres does not adversely affect the ability of biopsied embryos to form fetuses after transfer into pseudopregnant recipients. This study has potential clinical relevance in that it demonstrates that chromosomally defective embryos can be accurately identified before implantation. In addition, the techniques developed in this study may facilitate more efficient procedures for the genesis of animal models for human disorders such as Down syndrome and Alzheimers disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号