首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When isolated, detergent solubilized and affinity chromatographically purified nicotinic acetylcholine receptor of Torpedo californica electric organ is incubated with [gamma-32P]ATP/Mg2+, phosphatidylinositol 4-phosphate (PIP) is formed from receptor associated phosphatidylinositol (PI). This receptor associated endogenous kinase activity is enhanced by orthovanadate and, remarkably, also by acetylcholine. Exogenously added PI-kinase only increases the phosphorylation rate if vanadate is present. PIP as the main phosphorylation product (up to 95%) remains bound to the beta-, gamma- and delta-subunits of the receptor and to the receptor associated v-protein. The alpha-subunits do not carry 32p phosphate; no phosphatidylinositol 4,5-bisphosphate formation has been observed. Concomitant to lipid phosphorylation tyrosine and serine residues are phosphorylated (5% of total incorporated 32P phosphate).  相似文献   

2.
The effects of d-sparteine (d-SP) and its two derivatives, N-methylsparteine (IEM-1820) and N-phenylsparteine (IEM-1821), on nicotinic acetylcholine receptors (nAChR) of the rat superior cervical ganglion neurons were studied. Membrane currents evoked by iontophoretically applied acetylcholine were recorded using the patch-clamp recording technique in the whole-cell configuration. All three compounds were found to block nAChR competitively, the blocking activity being increased with an increase in the size of the blocking molecule. The EC50 values for d-SP, IEM-1820, and IEM-1821 were equal to 2.06±0.38 µM (n=3), 1.64±0.41 µM (n=4), and 0.65±0.17 µM (n=3), respectively. It was assumed that the increase in efficiency of blocking is related to the decrease in the rate of dissociation of the blocker and receptor molecules.Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 266–269, July–August, 1994.  相似文献   

3.
Agonist-binding kinetics to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were measured using sequential-mixing stopped-flow fluorescence methods to determine the contribution of each individual site to agonist-induced opening and desensitization. Timed dansyl-C6-choline (DC6C) binding followed by its dissociation upon mixing with high, competing agonist concentrations revealed four kinetic components: an initial, fast fluorescence decay, followed by a transient increase, and then two characteristic decays that reflect dissociation from the desensitized agonist sites. The transient increase resulted from DC6C binding to the open-channel based on its prevention by proadifen, a noncompetitive antagonist. Further characterization of DC6C channel binding by the inhibition of [3H]phencyclidine binding and by equilibrium measurements of DC6C fluorescence yielded KD values of 2-4 microM for the desensitized AChR and approximately 600 microM for the closed state. At this site, DC6C displayed a strongly blue-shifted emission spectrum, higher intrinsic fluorescence, and weaker energy transfer from tryptophans than when bound to either agonist site. The initial, fast fluorescence decay was assigned to DC6C dissociation from the alphadelta site of the AChR in its closed conformation, on the basis of inhibition with the site-selective antagonists d-tubocurarine and alpha-conotoxin MI. Fast decay amplitude data indicated an apparent affinity of 0.9 microM for the closed-state alphadelta site; the closed-state alphagamma-site affinity is inferred to be near 100 microM. These values and the known affinities for the desensitized conformation show that the alphagamma site drives AChR desensitization to a approximately 40-fold greater extent than the alphadelta site, undergoes energetically larger conformational changes, and is the primary determinant of agonist potency.  相似文献   

4.
The alpha-conotoxins MI and GI display stronger affinities for the alphagamma agonist site on the Torpedo californica electrocyte nicotinic acetylcholine receptor (ACHR) than for the alphadelta agonist site, while alpha-conotoxin SI binds with the same affinity to both sites. Prior studies reported that the arginine at position 9 on GI and the tyrosine at position 111 on the receptor gamma subunit were responsible for the stronger alphagamma affinities of GI and MI, respectively. This study was undertaken to determine if the alpha-conotoxin midchain cationic residues interact with Torpedo gammaY111. The findings show that lysine 10 on MI is responsible for the alphagamma selectivity of MI and confirm the previously reported importance of R9 on GI and on the SI analogue, SIP9R. The results also show that gammaY111 contributes substantially to the selective alphagamma high affinity of all three peptides. Double-mutant cycle analyses reveal that, in the alphagamma site, K10 on MI and R9 on SIP9R interact with the aromatic ring of gammaY111 to stabilize the high-affinity complex, while in contrast, R9 on GI does not. The substitution of Y for R at position 113 on the delta subunit converts the alphadelta site into a high-affinity site for MI, GI, and SIP9R through the interacting of deltaY113 with K10 on MI and with R9 on both GI and SIP9R. The overall data show that the residues in the two sites with which MI interacts, other than at gamma111/delta113, are either the same or similar enough to exert equivalent effects on MI, indicating that MI binds in the same orientation at the alphagamma and alphadelta sites. Similar findings show that SIP9R probably also binds in the same orientation at the wild-type alphagamma and alphadelta sites. The finding that R9 on GI interacts closely with deltaR113Y but not with gammaY111 means that GI binds in different orientations at the alphagamma and alphadelta sites. This report also discusses the molecular basis of the difference in the MI high-affinity sites on Torpedo and embryonic mouse muscle ACHRs.  相似文献   

5.
Computer-aided image-averaging methods are applied to different preparations of membrane-bound nicotinic acetylcholine receptor. Circular harmonic averaging (CHA), a novel, reference-independent averaging method developed by W. Kunath and H. Sack-Kongehl [1989) Ultramicroscopy 27:171-184) allows analyzing images of single molecules of the receptor in its native membrane-bound state. The five subunits of the receptor are clearly resolved. At the resolution obtained (approximately 20 A) no differences were observed with resting and agonist-desensitized receptors. A method is proposed for rapidly arranging the acetylcholine receptors to ordered lattices. Depending on the conditions, tetragonal or hexagonal, two-dimensional lattices can be obtained within 2 to 6 days at 4 degrees C. Analysis by CHA shows that the receptor molecules preserve their gross structure and dimensions in these membranes, but that they are randomly oriented. Both lattices, therefore, do not represent true two-dimensional crystals.  相似文献   

6.
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.  相似文献   

7.
M P Blanton  H H Wang 《Biochemistry》1990,29(5):1186-1194
A photoactivatable analogue of phosphatidylserine, 125I-labeled 4-azidosalicylic acid-phosphatidylserine (125I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin (a crude soybean lipid extract) vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the alpha subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR alpha subunit that incorporated 125I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the alpha subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the alpha subunit incorporated little or no detectable amount of probe.  相似文献   

8.
Karlsson E  Jolkkonen M  Mulugeta E  Onali P  Adem A 《Biochimie》2000,82(9-10):793-806
There are five subtypes of muscarinic acetylcholine receptors (M(1) to M(5)) which control a large number of physiological processes, such as the function of heart and smooth muscles, glandular secretion, release of neurotransmitters, gene expression and cognitive functions as learning and memory. A selective ligand is very useful for studying the function of a subtype in presence of other subtypes, which is the most common situation, since a cell or an organ usually has several subtypes. There are many non-selective muscarinic ligands, but only few selective ones. Mambas, African snakes of genus Dendroaspis have toxins, muscarinic toxins, that are selective for M(1), M(2) and M(4) receptors. They consist of 63-66 amino acids and four disulfides which form four loops. They are members of a large group of snake toxins, three-finger toxins; three loops are extended like the middle fingers of a hand and the disulfides and the shortest loop are in the palm of the hand. Some of the toxins target the allosteric site which is located in a cleft of the receptor molecule close to its extracellular part. A possible explanation to the good selectivity is that the toxins bind to the allosteric site, but because of their size they probably also bind to extracellular parts of the receptors which are rather different in the various subtypes. Some other allosteric ligands also have good selectivity, the alkaloid brucine and derivatives are selective for M(1), M(3) and M(4) receptors. Muscarinic toxins have been used in several types of experiments. For instance radioactively labeled M(1) and M(4) selective toxins were used in autoradiography of hippocampus from Alzheimer patients. One significant change in the receptor content was detected in one region of the hippocampus, dentate gyrus, where M(4) receptors were reduced by 50% in patients as compared to age-matched controls. Hippocampus is essential for memory consolidation. M(4) receptors in dentate gyrus may play a role, since they decreased in Alzheimers disease which destroys the memory. Another indication of the role of M(4) receptors for memory is that injection of the M(4) selective antagonist muscarinic toxin 3 (M(4)-toxin 1) into rat hippocampus produced amnesia.  相似文献   

9.
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication. In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC(50) values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC(50) value of 375 nM and a maximally effective concentration caused 91% block. [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in approximately 80% of neurons, with an IC(50) value of 1.4 nM and 46% maximal block of the total current. The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the alpha-conotoxins PnIA or PnIB, and by mecamylamine. (1)H NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and 11 of PnIA and PnIB influence potency and determine selectivity among alpha7 and other nAChR subtypes, including alpha3beta2 and alpha3beta4. Four distinct components of the nicotinic ACh-induced current in mammalian parasympathetic neurons have been dissected with these conopeptides.  相似文献   

10.
α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7 nAChR-targeting α-conotoxin ImI, blocked α7 and muscle nAChRs without displacing α-bungarotoxin ( Ellison et al. 2003, 2004 ), suggesting binding at a different site. We synthesized α-conotoxin ImII, its ribbon isomer (ImII iso ), 'mutant' ImII(W10Y) and found similar potencies in blocking human α7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [125I]-α-bungarotoxin from human α7 nAChRs in the cell line GH4C1 (IC50 17 and 23 μM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC50 2.0–9.0 μM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized α-bungarotoxin ( K d and IC50 2.5–8.2 μM). On Torpedo nAChR, α-conotoxin [125I]-ImII(W10Y) revealed specific binding ( K d 1.5–6.1 μM) and could be displaced by α-conotoxin ImII, ImII iso and ImII(W10Y) with IC50 2.7, 2.2 and 3.1 μM, respectively. As α-cobratoxin and α-conotoxin ImI displaced [125I]-ImII(W10Y) only at higher concentrations (IC50≥ 90 μM), our results indicate that α-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.  相似文献   

11.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to characterize the effects of lipids and detergents on acetylcholine receptor (AChR) conformation. Affinity purified AChR reconstituted into dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA), and cholesterol showed the same pattern of [125I]TID-labeling and demonstrated the same reduction in labeling of all four subunits upon desensitization by the agonist carbamylcholine, as partially purified AChR in native lipids. On the basis of the patterns of [125I]TID incorporation, reconstitution into DOPC/DOPA also appeared to stabilize the resting (functional) conformation of the AChR, while reconstitution in DOPC/cholesterol or DOPC alone largely desensitized the AChR. The effects of lipids on the functional state of the AChR was determined independently by measuring the ability of AChR reconstituted into different lipid combinations to undergo the change in affinity for agonist diagnostic of desensitization. The dramatic reduction in the apparent levels of [125I]TID associated with the subunits of the AChR observed upon agonist-induced desensitization was shown not to be due to a change in affinity for tightly bound lipid. Solubilization of affinity purified AChR reconstituted into DOPC/DOPA/cholesterol by the non-ionic detergents octyl glucoside, Triton X-100, and Tween 20 (final detergent concentration = 1%) was shown to produce the same pattern of [125I]TID-labeling as desensitization by agonist, while solubilization in 1% sodium cholate appeared to stabilize a conformation of the AChR more similar to the resting state.  相似文献   

12.
Decay kinetics of the postsynaptic excitatory currents (EPSC), distribution of the antibodies specific to different α-subunits of neuronal nicotinic acetylcholine receptors (nAChR), and the effects of these antibodies on ACh-induced membrane currents were studied in neurons of different autonomic ganglia of rats. It was shown that α3-, α5- and α7-subunits were present in all studied cultured neurons of the rat superior cervical ganglion (SCG), while the α4-subunit was present only in about half of the neurons; this α-subunit distribution differed from that in cultured intracardial neurons of rats. Two nAChR populations were found in rat SCG neurons, and a series of nAChR populations were found in murine superior mesenteric ganglion neurons; they differed in kinetics of their ion channel activity, voltage dependence and the rate of their open channel blockade. The possible functional role of neuronal nAChR heterogeneity is discussed.  相似文献   

13.
Two alpha-bungarotoxin-sensitive nicotinic receptor subtypes in cockroach neurons are identified as desensitizing (nAChD), selectively inhibitable with 100 nM imidacloprid, and non-desensitizing (nAChN), selectively inhibitable with 100 pM methyllycaconitine. Although the desensitization rate of nAChD receptors is highly variable, pharmacology is largely independent of desensitization rate. Because desensitized states tightly bind agonists, nAChD receptors are potently inhibited by neonicotinoids and specifically measured in radiolabeled imidacloprid binding assays. However, they are not usually detected in binding assays with radiolabeled alpha-bungarotoxin, which has a Kd for the resting state of 21 nM, but binds poorly to desensitized states often present in binding assays. In contrast, nAChN receptors are specifically measured in binding assays with radiolabeled alpha-bungarotoxin, which binds them with a Kd of 1.3 nM. nAChN receptors are activated by neonicotinoids at micromolar concentrations, and allosterically by spinosyn A, with an EC50 of 27 nM. Spinosyn A weakly antagonizes nAChD receptors -23% at 10 microM. The roles of the two nAChR subtypes in insecticide poisoning are discussed.  相似文献   

14.
Nicotinic acetylcholine receptors (nAChRs) are pentameric, neurotransmitter-gated ion channels responsible for rapid excitatory neurotransmission in the central and peripheral nervous systems, resulting in skeletal muscle tone and various cognitive effects in the brain. These complex proteins are activated by the endogenous neurotransmitter ACh as well as by nicotine and structurally related agonists. Activation and modulation of nAChRs has been implicated in the pathology of multiple neurological disorders, and as such, these proteins are established therapeutic targets. Here we use unnatural amino acid mutagenesis to examine the ligand binding mechanisms of two homologous neuronal nAChRs: the α4β4 and α7 receptors. Despite sequence identity among the residues that form the core of the agonist-binding site, we find that the α4β4 and α7 nAChRs employ different agonist-receptor binding interactions in this region. The α4β4 receptor utilizes a strong cation-π interaction to a conserved tryptophan (TrpB) of the receptor for both ACh and nicotine, and nicotine participates in a strong hydrogen bond with a backbone carbonyl contributed by TrpB. Interestingly, we find that the α7 receptor also employs a cation-π interaction for ligand recognition, but the site has moved to a different aromatic amino acid of the agonist-binding site depending on the agonist. ACh participates in a cation-π interaction with TyrA, whereas epibatidine participates in a cation-π interaction with TyrC2.  相似文献   

15.
Gymnodimines (GYMs) are phycotoxins exhibiting unusual structural features including a spirocyclic imine ring system and a trisubstituted tetrahydrofuran embedded within a 16-membered macrocycle. The toxic potential and the mechanism of action of GYM-A, highly purified from contaminated clams, have been assessed. GYM-A in isolated mouse phrenic hemidiaphragm preparations produced a concentration- and time-dependent block of twitch responses evoked by nerve stimulation, without affecting directly elicited muscle twitches, suggesting that it may block the muscle nicotinic acetylcholine (ACh) receptor (nAChR). This was confirmed by the blockade of miniature endplate potentials and the recording of subthreshold endplate potentials in GYM-A paralyzed frog and mouse isolated neuromuscular preparations. Patch-clamp recordings in Xenopus skeletal myocytes revealed that nicotinic currents evoked by constant iontophoretical ACh pulses were blocked by GYM-A in a reversible manner. GYM-A also blocked, in a voltage-independent manner, homomeric human alpha7 nAChR expressed in Xenopus oocytes. Competition-binding assays confirmed that GYM-A is a powerful ligand interacting with muscle-type nAChR, heteropentameric alpha3beta2, alpha4beta2, and chimeric alpha7-5HT(3) neuronal nAChRs. Our data show for the first time that GYM-A broadly targets nAChRs with high affinity explaining the basis of its neurotoxicity, and also pave the way for designing specific tests for accurate GYM-A detection in shellfish samples.  相似文献   

16.
The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca2? influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)~(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)~(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [3H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [3H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [3H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC??) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ~345 ?3 for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization.  相似文献   

17.
Interactions of charatoxin (4-methylthio-1,2-dithiolane; ChTX) and four openchain analogs as well as nereistoxin (NTX) with acetylcholine (ACh) receptors were studied using biochemical assays on the Torpedo electric organ and honey bee brain receptors and using electrophysiological assays on the response of the cell body of the fast coxal depressor motoneuron (Df) of the cockroach Periplaneta americana to ACh. The actions of ChTXs were complex. Except for ChTX Xl, they all potentiated the ACh-induced current in Periplaneta neurons, but at higher concentrations all ChTXs, except for ChTX XII, caused voltage-dependent block of this current. All CHTXs inhibited binding of [3H]perhydrohistrionicotoxin in the presence of ACh to the highaffinity noncompetitive blocker site on the Torpedo receptor, but all, except for ChTX XI, potentiated its binding in absence of ACh. The actions of ChTXs on the honey bee brain receptor were quite different from those on the Torpedo receptor. They inhibited, or had no effect on, [125I]α-bungarotoxin (α-BGT) binding to the Torpedo receptor, but all ChTXs, except for ChTX I, potentiated its binding to the honey bee receptor. It is suggested that the action of ChTXs on nicotinic ACh-receptors resulted from binding to lowaffinity noncompetitive blocker site. On the other hand, NTX was more potent than ChTXs on nicotinic ACh-receptors, and some similarities were noted between the actions of NTX on Torpedo and honey bee receptors NTX had a weak agonistlike effect in both cases and possibly bound to the ACh binding sites as well as the high-affinity noncompetitive blocker site. Thus the mechanisms of action of ChTXs and NTX on nicotinic ACh-receptors are different, and there are also differences in the responses to these toxins between receptors of insect central nervous system and Torpedo electric organ.  相似文献   

18.
Two properties were found to distinguish neuronal from muscle nicotinic acetylcholine receptors (nAChRs). First, neuronal nAChRs have a greater Ca2+ permeability. The high Ca2+ flux through neuronal nAChRs activates a Ca(2+)-dependent Cl- conductance, and the Ca2+ to Cs+ permeability ratio (PCa/PCs) is 7 times greater for neuronal than for muscle nAChRs. A second difference between the receptor types is that neuronal nAChRs are potently modulated by physiological levels of external Ca2+. Neuronal nAChR currents are enhanced by external Ca2+ in a dose-dependent manner. The results indicate that changes in extracellular Ca2+ modulate neuronal nAChRs and may modulate cholinergic synapses in the CNS. Also, activation of neuronal nAChRs produces a significant influx of Ca2+ that could be an important intracellular signal.  相似文献   

19.
A new nicotinic acetylcholine receptor (nAChR) subunit, beta 4, was identified by screening a rat genomic library. In situ hybridization histochemistry revealed expression of the beta 4 gene in the medial habenula of adult rat brains. The primary structure of this subunit was deduced from a cDNA clone isolated from a PC12 cDNA library. Functional nAChRs were detected in Xenopus oocytes injected in pairwise combinations with in vitro synthesized RNAs encoding beta 4 and either the alpha 2, alpha 3, or alpha 4 subunit. Unlike the alpha 3 beta 2 receptor, the alpha 3 beta 4 receptor is not blocked by bungarotoxin 3.1, indicating that the beta subunit can affect the sensitivity of neuronal nAChRs to this toxin. These results extend the functional diversity of nicotinic receptors in the nervous system.  相似文献   

20.
A series of pyridone ring-modified derivatives of (7R,9S)-(-)-cytisine were evaluated for affinity and functional activity at neuromuscular alpha1beta1gammadelta, ganglionic alpha3beta4, and central neuronal alpha4beta2 subtypes of nicotinic receptors. Halogenation at the 3-position improved affinity and functional activity, while substitution at the 5-position led to modest decreases in both, and disubstitution led to near abolition of functional activities and could be correlated with the electron-withdrawing ability of the halogen. Subtype selectivities of the halogenated derivatives were altered relative to cytisine in a substitution-dependent manner. Caulophylline methiodide was less potent than cytisine, but retained significant activity. Thiocytisine was relatively weak in potency and efficacy, but was significantly selective for the alpha4beta2 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号