首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lee JH  Park JH  Lee SH  Park CS  Jin DI 《Theriogenology》2004,62(8):1452-1458
Fluorescence in situ hybridization (FISH) is a sensitive technique for molecular diagnosis of chromosomes on single cells and can be applied to sex determination of embryos. The objective has been to develop an accurate and reliable bovine Y chromosome-specific DNA probe in order to sex biopsed blastomeres derived from IVF bovine embryos by FISH. Bovine Y chromosome-specific PCR product derived from BtY2 sequences was labeled with biotin-16-dUTP (BtY2-L1 probe), and FISH was performed on karyoplasts of biopsed blastomeres and matched demi-embryos. Our FISH signal was clearly detected in nuclei of blastomeres of male embryos. FISH analysis of bovine embryos gave high reliability (96%) between biopsied blastomeres and matched demi-embryos. These results indicated that the BtY2-L1 bovine Y chromosome-specific FISH probe was an effective probe for bovine embryo sexing, and the FISH technique of probe detection could improve the efficiency and reliability.  相似文献   

2.
3.
Data are presented for a subset of lymphocytes characterized by FISH as missing painted chromosomal material. These lymphocytes occur in both control and irradiated subjects. These cells have a much greater frequency of one-way translocations than cells in which all of the painted chromosomal material is present. Their presence contributes to interindividual variability in control translocation yields. These cells do not appear to be more prevalent in persons exposed to high radiation doses. It is suggested that their exclusion when selecting cells for analysis may improve the sensitivity of FISH as a biological dosimeter at low doses. Mechanisms for the production of these one-way translocations in vivo are also discussed, with a proposal that their variable frequency in individuals may be consistent with exposure to chemical clastogens.  相似文献   

4.
During the last decade not only multicolor fluorescence in situ hybridization (FISH) using whole chromosome paints as probes, but also numerous chromosome banding techniques based on FISH have been developed for the human and for the murine genome. This review focuses on such FISH-banding techniques, which were recently defined as 'any kind of FISH technique, which provide the possibility to characterize simultaneously several chromosomal subregions smaller than a chromosome arm. FISH-banding methods fitting that definition may have quite different characteristics, but share the ability to produce a DNA-specific chromosomal banding'. While the standard chromosome banding techniques like GTG lead to a protein-related black and white banding pattern, FISH-banding techniques are DNA-specific, more colorful and, thus, more informative. For some, even high-resolution FISH-banding techniques the development is complete and they can be used for whole genome hybridizations in one step. Other FISH-banding methods are only available for selected chromosomes and/or are still under development. FISH-banding methods have successfully been applied in research in evolution- and radiation-biology, as well as in studies on the nuclear architecture. Moreover, their suitability for diagnostic purposes has been proven in prenatal, postnatal and tumor cytogenetics, indicating that they are an important tool with the potential to partly replace the conventional banding techniques in the future.  相似文献   

5.
Fluorescence in situ hybridization (FISH) provides one of the most effective and rapid approaches for assigning and ordering DNA fragments within single eukaryotic chromosome bands. These techniques have wide applications not only for the mapping of the human genome and the genomes of other organisms, but also in clinical cytogenetics, somatic cell genetics, cancer diagnosis and gene expression studies.  相似文献   

6.
Endometriosis affects 10–15% of women of reproductive age and is a common cause of infertility and pelvic pain. Although endometriosis is characterized by abnormal growth or turn-over of cells, the genetic changes involved remain unclear. We employed a multi-color fluorescence in situ hybridization (FISH) strategy to determine the incidence of somatic chromosomal numeric alterations in severe/late stage endometriosis. Using alpha-satellite sequence-specific DNA probes for chromosomes 7, 8, 11, 12, 16, 17, and 18, simultaneous two- and three-color FISH were performed to evaluate the frequency of monosomic, disomic, and trisomic cells in normal control and endometriotic tissue specimens. In one of four endometriosis samples studied, a significantly higher frequency of monosomy for chromosome 17 (14.8%, χ2 4 = 53.3, P < 0.0001) and 16 (8.8%, χ2 4 = 11.4, P < 0.05) was observed. An increased number of cells with chromosome 11 trisomy (14.8%, χ2 4 = 96.2, P < 0.0001) were detected in a second case. In a third case, a distinct colony of nuclei with chromosome 16 monosomy (14.1%, χ2 4 = 21.39, P < 0.005) was detected. Acquired chromosome-specific aneuploidy may be involved in endometriosis, reflecting clonal expansion of chromosomally abnormal cells. That candidate tumor suppressor genes and oncogenes have been mapped to chromosomes 11, 16, and 17 suggests that chromosomal loss or gain plays a role in the development and/or progression of endometriosis. Received: 27 December 1997 / Accepted: 14 April 1997  相似文献   

7.
The fluorescence in situ hybridization (FISH) technique with whole chromosome painting for chromosomes #1 and #4 was used to study the impact of air pollution containing higher concentrations of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) in three European cities, Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). In each site were followed an exposed group, who were police officers or bus drivers who work usually through busy streets for at least 8 h, and a reference group, who spent more than 90% of their daily time indoors.

In Prague, a significant increase was observed in percentage of aberrant cells (% AB.C.) in the police officers compared to the reference group (0.33 ± 0.25 versus 0.24 ± 0.18, p < 0.05). In Kosice, the exposed group differed from reference in the endpoints FG/100 1.52 ± 1.18 versus 1.12 ± 1.30, p < 0.05; % AB.C. 0.30 ± 0.19 versus 0.21 ± 0.20, p < 0.05; t/1000 3.91 ± 3.18 versus 2.84 ± 3.10, p < 0.05. In Sofia were followed two exposed groups: police officers and bus drivers. All FISH endpoints were significantly higher in police officers compared to reference group (FG/100 1.60 ± 0.99 versus 0.82 ± 0.79, p < 0.01; % AB.C. 0.25 ± 0.14 versus 0.13 ± 0.13, p < 0.01; t/1000 4.19 ± 2.65 versus 2.13 ± 2.05, p < 0.05; rcp 1.46 ± 1.07 versus 0.70 ± 0.76, p < 0.05). In bus drivers compared to reference there was an increase in % AB.C. (0.25 ± 0.18 versus 0.13 ± 0.13, p < 0.05).

This is the first study when FISH method was used to analyze the impact of environmental air pollution. According to the original hypothesis it is expected that the most important group of chemicals responsible for the biological activity of air pollution represent c-PAHs.  相似文献   


8.
9.
Five cases with small supernumerary ring chromosomes are characterized at the molecular level. Routine chromosome banding analysis was insufficient for identification of the ring chromosomes, and none of them was DA/DAPI positive. Fluorescence in situ hybridization utilizing repetitive centromeric probes for all chromosomes has determined that one of these five ring chromosomes originates in each of chromosomes 4, 7, 8, 9, and 20. Chromosome painting with chromosome-specific libraries has confirmed this and excluded the involvement of additional chromosomes in the rearrangements.  相似文献   

10.
Fluorescence in situ hybridization (FISH) is being used increasingly in clinical practice; however, current FISH techniques require fresh material, and there is considerable variation in hybridization efficiency between laboratories. We have modified a FISH technique described by Pinkel et al. (1986) that works not only on freshly G-banded material but also on cytogenetic preparations ranging in age from 2 wk to 12 yr. We have tested this technique on several centromeric alphoid satellite probes (D1Z5, D7Z1, D17Z1, DXZ1, and DYZ3) and one noncentromeric minisatellite probe (D1Z2). Our average hybridization efficiency on freshly banded preparations for these probes is consistently greater than 90%. The combination of higher efficiency and the ability to perform hybridization on previously G-banded material makes this a valuable technique for retrospective analyses.  相似文献   

11.
12.

Background

Our current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data.

Methodology/Principal Findings

We employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ∼56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica.

Significance

While PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in polymicrobial communities. Thus, it facilitates the understanding of interspecies interactions and how these are affected by changes in the surrounding environment.  相似文献   

13.
The development of the gut is controlled and modulated by different interacting mechanisms such as, genetic endowment, intrinsic biological regulatory functions, environment influences and last but no least, the diet influence. Considered together with other endogenous and exogenous factors the type of feeding may interfere greatly in the regulation of the intestinal microbiota. During the last years molecular methods offer a complementarity to the classic culture-based knowledge. FISH has been applied for molecular evaluation of the microbiota in newborns delivered by vaginal delivery. Eleven probes/probe combinations for specific groups of faecal bacteria were used to determine the bacterial composition in faecal samples of newborns infants under different types of feeding. Breast-fed infants harbor a fecal microbiota by more than two times increased in numbers of Bifidobacterium cells when compared to formula-fed infants. After formula-feeding, Atopobium was found in significant counts and the numbers of Bifidobacterium dropped followed by increasing numbers in Bacteroides population. Moreover, under formula feeding the infants microbiota was more diverse.  相似文献   

14.
Johnson KL  Zhen DK  Bianchi DW 《BioTechniques》2000,29(6):1220-1224
We describe here a simple and versatile method of fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections with specific application in the study of microchimerism, that is, the presence of intact foreign cells within an individual. This is accomplished through the use of X and Y chromosome-specific probes to identify the presence of male nuclei within a tissue section from a female, and vice versa. This technique requires only minor modification if at first the hybridization does not yield fluorescent signals of high quality. Analysis of a wide variety of tissue types is possible with this method, and multiple tissue types from one or more individuals can be processed in the same hybridization reaction. This robust FISH method has been used successfully in our laboratory to investigate fetal cell microchimerism in the following paraffin-embedded tissue types: skin, lung, thyroid, adrenal gland, lymph node, heart, spleen, liver, pancreas, kidney, and intestine.  相似文献   

15.
In planta detection of mutualistic, endophytic, and pathogenic fungi commonly colonizing roots and other plant organs is not a routine task. We aimed to use fluorescence in situ hybridization (FISH) for simultaneous specific detection of different fungi colonizing the same tissue. We have adapted ribosomal RNA (rRNA) FISH for visualization of common mycorrhizal (arbuscular- and ectomycorrhiza) and endophytic fungi within roots of different plant species. Beside general probes, we designed and used specific ones hybridizing to the large subunit of rRNA with fluorescent dyes chosen to avoid or reduce the interference with the autofluorescence of plant tissues. We report here an optimized efficient protocol of rRNA FISH and the use of both epifluorescence and confocal laser scanning microscopy for simultaneous specific differential detection of those fungi colonizing the same root. The method could be applied for the characterization of other plant–fungal interactions, too. In planta FISH with specific probes labeled with appropriate fluorescent dyes could be used not only in basic research but to detect plant colonizing pathogenic fungi in their latent life-period.  相似文献   

16.
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.  相似文献   

17.
There is much interest in the gene content of the small heterochromatic W chromosome of the chicken, on the supposition that it may contain sex-determining genes. A considerable region in the chicken genome has been assigned to the W chromosome on the basis of its repetitive sequences. Using fluorescent in situ hybridization (FISH) we localized five Bacterial Artificial Chromosomes (BACs) onto female chicken metaphase spreads. We physically mapped these BACs to the Z chromosome. The chicken genome database, however, assigned all five BACs to the W chromosome. Our results demonstrate that the 17 genes on these BACs are Z-specific, and points to the inadequacy of assigning regions of the genome based exclusively on repetitive sequences.  相似文献   

18.
The sericulture industry plays a very important role in our national economy. Silkworm (Bombyx mori) is always regarded as a model animal and biological reactor. There have been detailed studies on the structure, expression and control and molecular evolution of silk genes. However, few, if any, reports are available on the localization of structural genes in silkworm by molecular cytogenetics. The present experiment has tentatively localized the Fib-H gene at the distal end of the 25th linkage group, namely at the 25-0.0 position, and verified that Fib-H has only one locus, thus providing a temporary solution to the problem about its localization.  相似文献   

19.
Image and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal or an A. pullulans 18S rRNA oligonucleotide probe in direct or indirect FISH reactions. In general, type of fixation (paraformaldehyde or methanol-acetic acid) had no apparent effect on cell integrity and minimal impact on fluorescence. Permeabilization by enzyme treatment for various times, though needed to admit high Mw detection reagents (avidin-FITC) in indirect FISH, tended to nonspecifically degrade cells and lower the signal. Digestion was unnecessary and undesirable for the directly labelled probes. Multilabelled (five fluorescein molecules) probes enhanced fluorescence about fourfold over unilabelled probes. Overall, direct FISH was preferable to indirect FISH and is recommended especially for studies of microbes on natural substrata.  相似文献   

20.
The extent of chromosomal mosaicism in human preimplantation embryos was examined using an improved procedure for the preparation and spreading of interphase nuclei for use in fluorescence in situ hybridisation, allowing the analysis of every nucleus within an embryo. One cell showed no hybridisation signals in only three of the 38 embryos that were included in this study, i.e. the hybridisation efficiency per successfully spread nucleus was 99% (197/200). Double-target in situ hybridisation analyses with X- and Y-chromosome-specific probes was performed to analyse nine embryos resulting from normal fertilisation, 22 polypronucleate embryos and seven cleavage-stage embryos where no (apronucleate) or only one pronucleus (monopronucleate) was observed. We also analysed autosomes 1 and 7 by double-target in situ hybridisation in the nuclei of two apronucleate, one monopronucleate and four polypronucleate embryos. All nine embryos that resulted from normal fertilisation were uniformly XY or XX. None of the apronucleate or monopronucleate embryos was haploid: three were diploid, one was triploid and three were mosaic. Fertilisation was detected by the presence of a Y-specific signal in four of these embryos. Of the polypronucleate embryos, two were diploid, two were triploid and 18 were mosaic for the sex chromosomes and/or autosomes 1 and 7. These results demonstrate that fertilisation sometimes occurs in monopronucleate embryos and that chromosomal mosaicism can be detected with high efficiency in apronucleate, monopronucleate and polypronucleate human embryos using fluorescence in situ hybridisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号