共查询到20条相似文献,搜索用时 0 毫秒
1.
There is abundant evidence of the potential for exogenous agents to cause cancer but the proportion of human cancers attributable to defined external agents is uncertain. With rare exceptions it is difficult to demonstrate a role for exogenous agents in increasing mutation above background rates. There are many sources of endogenous mutation including physico-chemical processes, free radicals and enzymatic processes controlling DNA damage and repair. Evidence for the role of diet and genetic factors as major determinants of endogenous mutagenesis is reviewed with reference to the spontaneous spectrum of mutations in human cells and the quantitative measurement of mutation frequency in dietary restriction and the senescence-accelerated mouse. 相似文献
2.
The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore 总被引:1,自引:0,他引:1
G P Jacobs A Samuni G Czapski 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1985,47(6):621-627
Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia. 相似文献
3.
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena. 相似文献
4.
Hydroperoxide-induced DNA damage and mutations 总被引:8,自引:0,他引:8
Termini J 《Mutation research》2000,450(1-2):107-124
Hydroperoxides (ROOH) are believed to play an important role in the generation of free radical damage in biology. Hydrogen peroxide (R=H) is produced by endogenous metabolic and catabolic processes in cells, while alkyl hydroperoxides (R=lipid, protein, DNA) are produced by free radical chain reactions involving molecular oxygen (autooxidation). The role of metal ions in generating DNA damage from hydroperoxides has long been recognized, and several distinct, biologically relevant mechanisms have been identified. Identification of the mechanistic pathways is important since it will largely determine the types of free radicals generated, which will largely determine the spectrum of DNA damage produced. Some mechanistic aspects of the reactions of low valent transition metal ions with ROOH and their role in mutagenesis are reviewed with a perspective on their possible role in the biological generation of DNA damage. A survey of hydroperoxide-induced mutagenesis studies is also presented. In vitro footprinting of DNA damage induced by hydroperoxides provides relevant information on sequence context dependent reactivity, and is valuable for the interpretation of mutation spectra since it represents the damage pattern prior to cellular repair. Efforts in this area are also reviewed. 相似文献
5.
G Frosina 《European journal of biochemistry》2000,267(8):2135-2149
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed. 相似文献
6.
The field of DNA damage responsiveness in general, and the consequences of endogenous and exogenous base damage in DNA, in particular, has made new and exciting contributions to our increasing understanding of the initiation and progression of neoplasia in humans. This article presents some of the highlights in this area of investigation, with a particular emphasis on DNA repair, the tolerance of DNA damage and its contribution to mutagenesis, and DNA damage checkpoint regulation. 相似文献
7.
8.
Estrogen, DNA damage and mutations 总被引:13,自引:0,他引:13
Estrogen administration to rodents results in various types of DNA damage and ultimately leads to tumors in estrogen-responsive tissues. Yet these hormones have been classified as nonmutagenic, because they did not induce mutations in classical bacterial and mammalian mutation assays. In this review, we have discussed the induction by estrogens of DNA and chromosomal damage and of gene mutations, because the classical assays were designed to uncover mutations only at one specific locus and could not have detected other types of mutations or changes in other genes. Various types of estrogen-induced DNA damage include: (a) direct covalent binding of estrogen quinone metabolites to DNA; (b) enhancement of endogenous DNA adducts by chronic estrogen exposure of rodents; (c) free radical generation by metabolic redox cycling between quinone and hydroquinone forms of estrogens and free radical damage to DNA such as strand breakage, 8-hydroxylation of purine bases of DNA and lipid hydroperoxide-mediated DNA modification. Two different types of chromosomal damage have also been induced by estrogen in vivo and in cells in culture such as numerical chromosomal changes and also structural chromosomal aberrations. Gene mutations have been induced in several cell types in culture either by the parent estrogen or by reactive estrogen quinone metabolites. Furthermore, in estrogen-induced kidney tumors in hamsters, several mutations have been observed in the DNA polymerase beta gene mRNA. Estradiol also induces microsatellite instability in these kidney tumors and in premalignant kidney exposed to estradiol. Although this work is still ongoing, it can be concluded that estrogens are complete carcinogens capable of tumor initiation by mutation potentially in critical genes. The hormonal effects of estrogens may complete the development of tumors. 相似文献
9.
Thomas Klopstock Markus Naumann Peter Seibel Bertold Shalke Karlheinz Reiners Heinz Reichmann 《Molecular and cellular biochemistry》1997,174(1-2):271-275
Multiple symmetric lipomatosis (MSL) is a rare disorder of middle life characterized by large subcutaneous fat masses around the neck, shoulders and other parts of the trunk. Peripheral neuropathy is a common finding in these predominantly male patients. Employing electrophysiological measures, we found additional signs of central nervous system involvement in a majority of patients. Etiologically, there is an association with mitochondrial dysfunction. In muscle biopsy, we found ragged red fibers in 8 of 12 patients. Molecular genetic analysis revealed multiple deletions of mitochondrial DNA in one patient and the MERRF mutation at nucleotide 8344 in another. In this review, we summarize our clinical, electrophysiological morphological, biochemical and molecular genetic findings in 17 MSL patients, and give a survey of the literature. (Mol Cell Biochem 174: 271–275, 1997) 相似文献
10.
Takashi Tadokoro Mahesh Ramamoorthy Venkateswarlu Popuri Alfred May Jingyan Tian Peter Sykora Ivana Rybanska David M. Wilson III Deborah L. Croteau Vilhelm A. Bohr 《Molecular biology of the cell》2012,23(21):4273-4285
Human RECQL5 is a member of the RecQ helicase family, which maintains genome stability via participation in many DNA metabolic processes, including DNA repair. Human cells lacking RECQL5 display chromosomal instability. We find that cells depleted of RECQL5 are sensitive to oxidative stress, accumulate endogenous DNA damage, and increase the cellular poly(ADP-ribosyl)ate response. In contrast to the RECQ helicase family members WRN, BLM, and RECQL4, RECQL5 accumulates at laser-induced single-strand breaks in normal human cells. RECQL5 depletion affects the levels of PARP-1 and XRCC1, and our collective results suggest that RECQL5 modulates and/or directly participates in base excision repair of endogenous DNA damage, thereby promoting chromosome stability in normal human cells. 相似文献
11.
Microcephaly is a clinical characteristic for human nijmegen breakage syndrome (NBS, mutated in NBS1 gene), a chromosomal instability syndrome. However, the underlying molecular pathogenesis remains elusive. In the present study, we demonstrate that neuronal disruption of NBS (Nbn in mice) causes microcephaly characterized by the reduction of cerebral cortex and corpus callosum, recapitulating neuronal anomalies in human NBS. Nbs1-deficient neocortex shows accumulative endogenous DNA damage and defective activation of Ataxia telangiectasia and Rad3-related (ATR)-Chk1 pathway upon DNA damage. Notably, in contrast to massive apoptotic cell death in Nbs1-deficient cerebella, activation of p53 leads to a defective neuroprogenitor proliferation in neocortex, likely via specific persistent induction of hematopoietic zinc finger (Hzf) that preferentially promotes p53-mediated cell cycle arrest whilst inhibiting apoptosis. Moreover, Trp53 mutations substantially rescue the microcephaly in Nbs1-deficient mice. Thus, the present results reveal the first clue that developing neurons at different regions of brain selectively respond to endogenous DNA damage, and underscore an important role for Nbs1 in neurogenesis. 相似文献
12.
DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals 总被引:4,自引:0,他引:4
Sigurdson AJ Hauptmann M Alexander BH Doody MM Thomas CB Struewing JP Jones IM 《Mutation research》2005,586(2):173-188
Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other, n=42), early-onset breast cancer (early-onset, age or=75% versus below the median, age-adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples. 相似文献
13.
Crissy Dudgeon Sathyavageeswaran Shreeram Kan Tanoue Sharlyn J Mazur Ahmed Sayadi Robert C Robinson Ettore Appella Dmitry V Bulavin 《Cell cycle (Georgetown, Tex.)》2013,12(16):2656-2664
The Wip1 phosphatase is an oncogene that is overexpressed in a variety of primary human cancers. We were interested in identifying genetic variants that could change Wip1 activity. We identified 3 missense SNPs of the human Wip1 phosphatase, L120F, P322Q, and I496V confer a dominant-negative phenotype. On the other hand, in primary human cancers, PPM1D mutations commonly result in a gain-of-function phenotype, leading us to identify a hot-spot truncating mutation at position 525. Surprisingly, we also found a significant number of loss-of-function mutations of PPM1D in primary human cancers, both in the phosphatase domain and in the C terminus. Thus, PPM1D has evolved to generate genetic variants with lower activity, potentially providing a better fitness for the organism through suppression of multiple diseases. In cancer, however, the situation is more complex, and the presence of both activating and inhibiting mutations requires further investigation to understand their contribution to tumorigenesis. 相似文献
14.
15.
Synonymous mutations - sometimes called 'silent' mutations - are now widely acknowledged to be able to cause changes in protein expression, conformation and function. The recent increase in knowledge about the association of genetic variants with disease, particularly through genome-wide association studies, has revealed a substantial contribution of synonymous SNPs to human disease risk and other complex traits. Here we review current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications. 相似文献
16.
Endogenous DNA damage as related to cancer and aging 总被引:32,自引:0,他引:32
B N Ames 《Mutation research》1989,214(1):41-46
The endogenous background level of oxidant-induced DNA damage in vivo has been assayed by measuring 8-hydroxydeoxyguanosine (oh8dG), thymine glycol and thymidine glycol in urine and oh8dG in DNA. The level of oxidative DNA damage as measured by oh8dG in normal rat liver is shown to be extensive (1/130,000 bases in nuclear DNA and 1/8000 bases in mitochondrial DNA), especially in mtDNA. The methylation adduct 7-methylguanine (m7G) has also been found. m7G is one of about 5 adducts found on methylating DNA, and oh8dG is one of about 20 adducts found on oxidizing DNA, e.g., by radiation. We also discuss 3 hitherto unrecognized antioxidants in man. 相似文献
17.
The cellular responses to DNA damage 总被引:1,自引:0,他引:1
The ability to survive spontaneous and induced DNA damage, and to minimize the number of heritable mutations that this causes, is essential to the maintenance of genome integrity for all organisms. Early studies on model eukaryotes focused on genes acting in defined DNA repair pathways. More recent work with the budding and fission yeasts and mammalian cells has started to integrate the DNA damage response with cell physiology and the cell cycle. 相似文献
18.
L Weiss 《Cell biophysics》1991,18(2):73-79
Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface "unfolding," the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis. 相似文献
19.
Singh R Kaur B Kalina I Popov TA Georgieva T Garte S Binkova B Sram RJ Taioli E Farmer PB 《Mutation research》2007,620(1-2):71-82
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations. 相似文献
20.
A model is derived that accounts for the short-range electrostatic contribution to the bending of DNA molecule in solution and in complexes with proteins in terms of the non-linear Poisson-Boltzmann equation. We defined that the short-range electrostatic interactions depend on the changes of the polyion surface charge density under deformation, while the long-range interactions depend on the bending-induced changes in distances between each two points along the polyion axis. After an appropriate simplification of the Poisson-Boltzmann equation, the short-range term is calculated separately giving the lower limit for the electrostatic contribution to the DNA persistence length. The result is compared with the theoretical approaches developed earlier [M. Fixman, J. Chem. Phys. 76 (1982) 6346; M. Le Bret, J. Chem. Phys. 76 (1982) 6243] and with the experimental data. The conclusion is made that the results of Fixman-Le Bret, which took into account both types of the electrostatic interactions for a uniformly bent polyion, give the upper limit for the electrostatic persistence length at low ionic strength, and the actual behavior of the DNA persistence length lies between two theoretical limits. Only the short-range term is significant at moderate-to-high ionic strength where our results coincide with the predictions of Fixman-Le Bret. The bending of DNA on the protein surface that is accompanied by an asymmetric neutralization of the DNA charge is also analyzed. In this case, the electrostatic bending energy gives a significant favorite contribution to the total bending energy of DNA. Important implications to the mechanisms of DNA-protein interactions, particularly in the nucleosome particle, are discussed. 相似文献