首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭子丹  胡琦  李雪  吴琼  李庆军  康杨 《生物磁学》2011,(23):4542-4544,4551
目的:对一中国常染色体显性先天性缝性白内障家系进行晶体蛋白基因(CRYAA、CRYAB、CRYBB2、CRYGC、CRYGD)的突变筛查。方法:对一中国先天性白内障家系进行研究,通过直接测序,筛查此家系中全部患者的CRYAA、CRYAB、CRYBB2、CRYGC和CRYGD基因外显子以及临近的内含子的剪接位点。结果:直接测序后发现该缝性白内障家系基因的外显子及其临近的内含子中.均未发现任何突变。结论:CRYAA、CRYAB、CRYBB2、CRYGC和CRYGD为该先天性白内障家系的非致病基因。  相似文献   

2.
We identified a mutation in the CRYGD gene (P23S) of the gamma-crystallin gene cluster that is associated with a polymorphic congenital cataract that occurs with frequency of approximately 0.3% in a human population. To gain insight into the molecular mechanism of the pathogenesis of gamma-crystallin isoforms, we undertook an evolutionary analysis of the available mammalian and newly obtained primate sequences of the gamma-crystallin genes. The cataract-associated serine at site 23 corresponds to the ancestral state, since it was found in CRYGD of a lower primate and all the surveyed nonprimate mammals. Crystallin proteins include two structurally similar domains, and substitutions in mammalian CRYGD protein at site 23 of the first domain were always associated with substitutions in the structurally reciprocal sites 109 and 136 of the second domain. These data suggest that the cataractogenic effect of serine at site 23 in the N-terminal domain of CRYGD may be compensated indirectly by amino acid changes in a distal domain. We also found that gene conversion was a factor in the evolution of the gamma-crystallin gene cluster throughout different mammalian clades. The high rate of gene conversion observed between the functional CRYGD gene and two primate gamma-crystallin pseudogenes (CRYGEP1 and CRYGFP1) coupled with a surprising finding of apparent negative selection in primate pseudogenes suggest a deleterious impact of recently derived pseudogenes involved in gene conversion in the gamma-crystallin gene cluster.  相似文献   

3.
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by creating gene knock-in mice expressing the arginine 49 to cysteine mutation (R49C) in alphaA-crystallin (alphaA-R49C). This mutation has been linked with autosomal dominant hereditary cataracts in a four-generation Caucasian family. Homologous recombination in embryonic stem cells was performed using a plasmid containing the C to T transition in exon 1 of the cryaa gene. alphaA-R49C heterozygosity led to early cataracts characterized by nuclear opacities. Unexpectedly, alphaA-R49C homozygosity led to small eye phenotype and severe cataracts at birth. Wild type littermates did not show these abnormalities. Lens fiber cells of alphaA-R49C homozygous mice displayed an increase in cell death by apoptosis mediated by a 5-fold decrease in phosphorylated Bad, an anti-apoptotic protein, but an increase in Bcl-2 expression. However, proliferation measured by in vivo bromodeoxyuridine labeling did not decline. The alphaA-R49C heterozygous and homozygous knock-in lenses demonstrated an increase in insoluble alphaA-crystallin and alphaB-crystallin and a surprising increase in expression of cytoplasmic gamma-crystallin, whereas no changes in beta-crystallin were observed. Co-immunoprecipitation analysis showed increased interaction between alphaA-crystallin and lens substrate proteins in the heterozygous knock-in lenses. To our knowledge this is the first knock-in mouse model for a crystallin mutation causing hereditary human cataract and establishes that alphaA-R49C promotes protein insolubility and cell death in vivo.  相似文献   

4.
Fu L  Liang JJ 《FEBS letters》2002,513(2-3):213-216
Human lens gammaC-crystallin and T5P mutant were cloned, and their biophysical properties and thermodynamic stability were studied. CRYGC (T5P) is one of the many gamma-crystallin mutant genes for autosomal dominant congenital cataracts. This mutation is associated with Coppock-like cataract, and has the phenotype of a dust-like opacity of the fetal lens nucleus. During cloning and overexpression, the majority of T5P mutant was found in the inclusion body. This property is unique among the many cataract gamma-crystallin mutant genes. It is thus worthwhile to study what factors contribute to this unique property of gammaC-crystallin. One possibility is changes in conformation and stability, which can be studied using spectroscopic measurements. In this study, conformational change was studied by circular dichroism and fluorescence measurements, and conformational stability was determined by thermal unfolding probed by Trp fluorescence and time-dependent light scattering. The T5P mutation obviously changes conformation and decreases conformational stability.  相似文献   

5.
6.
7.
A seven-generation family with 30 members affected by highly variable autosomal dominant zonular pulverulent cataracts has been previously described. We have localized the cataracts to a 19-cM interval on chromosome 2q33-q35 including the gamma-crystallin gene cluster. Maximum lod scores are 4.56 (theta=0.02) with D2S157, 3.66 (theta=0.12) with D2S72, and 3.57 (theta=0.052) with CRYG. Sequencing and allele-specific oligonucleotide analysis of the pseudo gammaE-crystallin promoter region from individuals in the pedigree suggest that activation of the gammaE-crystallin pseudo gene is unlikely to cause the cataracts in the family. In addition, base changes in the TATA box but not the Sp1-binding site have been found in unaffected controls and can be excluded as a sole cause of cataracts. In order to investigate the underlying genetic mechanism of cataracts in this family further, exons of the highly expressed gammaC- and gammaD-crystallin genes have been sequenced. The gammaD-crystallin gene shows no abnormalities, but a 5-bp duplication within exon 2 of the gammaC-crystallin gene has been found in one allele of each affected family member and is absent from both unaffected family members and unaffected controls. This mutation disrupts the reading frame of the gammaC-crystallin coding sequence and is predicted to result in the synthesis of an unstable gammaC-crystallin with 38 amino acids of the first "Greek key" motif followed by 52 random amino acids. This finding suggests that the appropriate association of mutant betagamma-crystallins into oligomers is not necessary to cause cataracts and may give us new insights into the genetic mechanism of cataract formation.  相似文献   

8.
Protein inclusions are associated with a diverse group of human diseases ranging from localized neurological disorders through to systemic non-neuropathic diseases. Here, we present evidence that the formation of intranuclear inclusions is a key event in cataract formation involving altered gamma-crystallins that are un likely to adopt their native fold. In three different inherited murine cataracts involving this type of gamma-crystallin mutation, large inclusions containing the altered gamma-crystallins were found in the nuclei of the primary lens fibre cells. Their formation preceded not only the first gross morphological changes in the lens, but also the first signs of cataract. The inclusions contained filamentous material that could be stained with the amyloid-detecting dye, Congo red. In vitro, recombinant mutant gammaB-crystallin readily formed amyloid fibrils under physiological buffer conditions, unlike wild-type protein. These data suggest that this type of cataract is caused by a mechanism involving the nuclear targeting and deposition of amyloid-like inclusions. The mutant gamma-crystallins initially disrupt nuclear function, but then this progresses to a full cataract phenotype.  相似文献   

9.
Congenital cataract is a major cause of visual impairment and childhood blindness. The solubility and stability of crystallin proteins play critical roles in maintaining the optical transparency of the lens during the life span. Previous studies have shown that approximately 8.3%∼25% of congenital cataracts are inherited, and mutations in crystallins are the most common. In this study, we attempted to identify the genetic defect in a four-generation family affected with congenital cataracts. The congenital cataract phenotype of this four-generation family was identified as membranous cataract by slit-lamp photography. Mutation screening of the candidate genes detected a heterozygous c.465G→C change in the exon6 of the βB2-crystallin gene (CRYBB2) in all family members affected with cataracts, resulting in the substitution of a highly conserved Tryptophan to Cystine (p.W151C). The mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis and found that the transition resulted in the absence of a BslI restriction site in the affected members of the pedigree. The outcome of PolyPhen-2 and SIFT analysis predicted that this W151C mutation would probably damage to the structure and function of βB2-crystallin. Wild type (wt) and W151C mutant βB2-crystallin were expressed in human lens epithelial cells (HLECs), and the fluorescence results showed that Wt-βB2-crystallin was evenly distributed throughout the cells, whereas approximately 34.7% of cells transfected with the W151C mutant βB2-crystallin formed intracellular aggregates. Taken together, these data suggest that the missense mutation in CRYBB2 gene leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.  相似文献   

10.
Genetic analysis of a large Indian family with an autosomal dominant cataract phenotype allowed us to identify a novel cataract gene, CRYBA4. After a genomewide screen, linkage analysis identified a maximum LOD score of 3.20 (recombination fraction [theta] 0.001) with marker D22S1167 of the beta -crystallin gene cluster on chromosome 22. To date, CRYBA4 was the only gene in this cluster not associated with either human or murine cataracts. A pathogenic mutation was identified in exon 4 that segregated with the disease status. The c.317T-->C sequence change is predicted to replace the highly conserved hydrophobic amino acid phenylalanine94 with the hydrophilic amino acid serine. Modeling suggests that this substitution would significantly reduce the intrinsic stability of the crystalline monomer, which would impair its ability to form the association modes critical for lens transparency. Considering that CRYBA4 associates with CRYBB2 and that the latter protein has been implicated in microphthalmia, mutational analysis of CRYBA4 was performed in 32 patients affected with microphthalmia (small eye). We identified a c.242T-->C (Leu69Pro) sequence change in exon 4 in one patient, which is predicted here to disrupt the beta -sheet structure in CRYBA4. Protein folding would consequently be impaired, most probably leading to a structure with reduced stability in the mutant. This is the first report linking mutations in CRYBA4 to cataractogenesis and microphthalmia.  相似文献   

11.
A new cataract mutation was discovered in an ongoing program to identify new mouse models of hereditary eye disease. Lens opacity 12 (Lop12) is a semidominant mutation that results in an irregular nuclear lens opacity similar to the human Coppock cataract. Lop12 is associated with a small nonrecombining segment that maps to mouse Chromosome 1 close to the eye lens obsolescence mutation (Cryge(Cat2-Elo)), a member of the gamma-crystallin gene cluster (Cryg). Using a systemic candidate gene approach to analyze the entire Cryg cluster, a G to A transition was found in exon 3 of Crygd associated with the Lop12 mutation and has been designated Crygd(Lop12). The mutation Crygd(Lop12) leads to the formation of an in-frame stop codon that produces a truncated protein of 156 amino acids. It is predicted that the defective gene product alters protein folding of the gamma-crystallin(s) and results in lens opacity.  相似文献   

12.
Juvenile-onset cataracts are distinguished from congenital cataracts by the initial clarity of the lens at birth and the gradual development of lens opacity in the second and third decades of life. Genomewide linkage analysis in a multigenerational pedigree, segregating for autosomal dominant juvenile-onset cataracts, identified a locus in chromosome region 3q21.2-q22.3. Because of the proximity of the gene coding for lens beaded filament structural protein-2 (BFSP2) to this locus, we screened for mutations in the coding sequence of BFSP2. We observed a unique C-->T transition, one that was not observed in 200 normal chromosomes. We predicted that this led to a nonconservative R287W substitution in exon 4 that cosegregated with cataracts. This mutation alters an evolutionarily conserved arginine residue in the central rod domain of the intermediate filament. On consideration of the proposed function of BFSP2 in the lens cytoskeleton, it is likely that this alteration is the cause of cataracts in the members of the family we studied. This is the first example of a mutation in a noncrystallin structural gene that leads to a juvenile-onset, progressive cataract.  相似文献   

13.
14.
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid beta-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-year-old, enzyme-deficient, 1226G (Asn370----Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 (delta EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 (delta EX2-3), or a completely normal sequence. About 50% of the cDNAs were the delta EX2, the delta EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5' and 3' intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G+1----A+1 transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed "IVS2 G+1----A+1," is the first splicing mutation described in Gaucher disease and accounted for about 3.4% of the Gaucher disease alleles in the Ashkenazi Jewish population. The occurrence of this "pseudogene"-type mutation in the structural gene indicates the role of acid beta-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease.  相似文献   

15.
Cataracts are a major cause of blindness. The most common forms of cataracts are age- and UV-related and develop mostly in the elderly, while congenital cataracts appear at birth or in early childhood. The Dahl salt-sensitive (SS/Jr) rat is an extensively used model of salt-sensitive hypertension that exhibits concomitant renal disease. In the mid-1980s, cataracts appeared in a few animals in the Dahl S colony, presumably the result of a spontaneous mutation. The mutation was fixed and bred to establish the SS/Jr-Ctr substrain. The SS/Jr-Ctr substrain has been used exclusively by a single investigator to study the role of steroids and hypertension. Using a classical positional cloning approach, we localized the cataract gene with high resolution to a less than 1-Mbp region on chromosome 9 using an F1(SS/Jr-Ctr × SHR) × SHR backcross population. The 1-Mbp region contained only 13 genes, including 4 genes from the γ-crystallins (Cryg) gene family, which are known to play a role in cataract formation. All of the γ-crystallins were sequenced and a novel point mutation in the start codon (ATG → GTG) of the Crygd gene was identified. This led to the complete absence of the CRYGD protein in the eyes of the SS/Jr-Ctr strain. In summary, the identification of the genetic cause in this novel cataract model may provide an opportunity to better understand the development of cataracts, particularly in the context of hypertension.  相似文献   

16.
In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T-->G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts.  相似文献   

17.
Cataracts, the loss of lens transparency, are the leading cause of human blindness. The zebrafish embryo, with its transparency and relatively large eyes, is an excellent model for studying ocular disease in vivo. We found that the zebrafish cloche mutant, both the cloche(m39) and cloche(S5) alleles, which have defects in hematopoiesis and blood vessel development, also have lens cataracts. Quantitative examination of the living zebrafish lens by confocal microscopy showed significant increases in lens reflectance. Histological analysis revealed retention of lens fiber cell nuclei owing to impeded terminal differentiation. Proteomics identified gamma-crystallin as a protein that was substantially diminished in cloche mutants. Crystallins are the major structural proteins in mouse, human and zebrafish lens. Defects in crystallins have previously been shown in mice and humans to contribute to cataracts. The loss of gamma-crystallin protein in cloche was not due to lowered mRNA levels but rather to gamma-crystallin protein insolubility. AlphaA-crystallin is a chaperone that protects proteins from misfolding and becoming insoluble. The cloche lens is deficient in both alphaA-crystallin mRNA and protein during development from 2-5 dpf. Overexpression of exogenous alphaA-crystallin rescued the cloche lens phenotype, including solubilization of gamma-crystallin, increased lens transparency and induction of lens fiber cell differentiation. Taken together, these results indicate that alphaA-crystallin expression is required for normal lens development and demonstrate that cataract formation can be prevented in vivo. In addition, these results show that proteomics is a valuable tool for detecting protein alterations in zebrafish.  相似文献   

18.
Congenital cataracts are an important cause of bilateral visual impairment in infants. In a four-generation family of English descent, we mapped dominant congenital posterior polar cataract to chromosome 11q22-q22.3. The maximum LOD score, 3.92 at recombination fraction 0, was obtained for marker D11S898, near the gene that encodes crystallin alpha-B protein (CRYAB). By sequencing the coding regions of CRYAB, we found in exon 3 a deletion mutation, 450delA, that is associated with cataract in this family. The mutation resulted in a frameshift in codon 150 and produced an aberrant protein consisting of 184 residues. This is the first report of a mutation, in this gene, resulting in isolated congenital cataract.  相似文献   

19.
20.
Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号