首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoASH, Mg2+, ATP and (-)-carnitine were found to be essential for the production of palmitoylcarnitine from palmitate by purified barley etio-chloroplasts. It was concluded that long-chain acyl CoA synthetase (palmitoyl CoA synthetase, EC 6.2.1.3) and carnitine long-chain acyl-transferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity were present in the etio-chloroplasts. It is suggested that the long-chain acylcarnitine formed may move more easily through membrane barriers than the long-chain acyl CoA compound. Also or alternatively this enzyme may spare CoA by transferring long-chain acyl groups from long-chain acyl CoA to carnitine.  相似文献   

2.
Fatty acid metabolites accumulate in the heart underpathophysiological conditions that affect -oxidation and can elicit marked electrophysiological changes that are arrhythmogenic. The purpose of the present study was to determine the impact of amphiphilic fatty acid metabolites on K+currents that control cardiac refractoriness and excitability. Transient outward(Ito) andinward rectifier(IK1)K+ currents were recorded by thewhole cell voltage-clamp technique in rat ventricular myocytes, and theeffects of two major fatty acid metabolites were examined:palmitoylcarnitine and palmitoyl-coenzyme A (palmitoyl-CoA).Palmitoylcarnitine (0.5-10 µM) caused a concentration-dependent decrease in Itodensity in myocytes internally dialyzed with the amphiphile; 10 µMreduced mean Itodensity at +60 mV by 62% compared with control(P < 0.05). In contrast, externalpalmitoylcarnitine at the same concentrations had no effect, nor didinternal dialysis significantly alterIK1. Dialysiswith palmitoyl-CoA (1-10 µM) produced a smaller decrease inIto densitycompared with that produced by palmitoylcarnitine; 10 µM reduced meanIto density at+60 mV by 37% compared with control(P < 0.05). Both metabolites delayedrecovery of Itofrom inactivation but did not affect voltage-dependent properties.Moreover, the effects of palmitoylcarnitine were relatively specific,as neither palmitate (10 µM) nor carnitine (10 µM) alone significantly influencedIto when added tothe pipette solution. These data therefore suggest that amphiphilicfatty acid metabolites downregulateIto channels by amechanism confined to the cytoplasmic side of the membrane. Thisdecrease in cardiac K+ channelactivity may delay repolarization under pathophysiological conditionsin which amphiphile accumulation is postulated to occur, such asdiabetes mellitus or myocardial infarction.

  相似文献   

3.
Palmitoylcarnitine was oxidised by pea mitochondria.l-carnitine was an essential addition for the oxidation of palmitate or palmitoylCoA. When palmitate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. Additions of CoA inhibited the oxidation of palmitate. It was shown that CoA was acting as a competitive inhibitor of the carnitine-stimulated O2 uptake. It is suggested that palmitoylacarnitine and carnitine passed through the mitochondrial barrier with ease but palmitoylCoA and CoA did not. The presence of carnitine long-chain acyl (palmitoyl)transferase (EC 2.3.1.21) in pea-cotyledon mitochondria was shown. This enzyme may play a role in the transport of long-chain acyl groups through membrane barriers.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

4.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   

5.
Acetylcarnitine was rapidly oxidised by pea mitochondria. (-)-carnitine was an essential addition for the oxidation of acetate or acetyl CoA. When acetate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. CoASH additions inhibited the oxidation of acetate, acetyl CoA and acetylcarnitine. It was shown that CoASH was acting as a competitive inhibitor of the carnitine stimulated O2 uptake. It is suggested that acetylcarnitine and carnitine passed through the mitochondrial membrane barrier with ease but acetyl CoA and CoA did not. Carnitine may also buffer the extra- and intra-mitochondrial pools of CoA. The presence of carnitine acetyltransferase (EC 2.3.1.7) on the pea mitochondria is inferred.  相似文献   

6.
Hemiacetylcarnitinium (2S,6R:2R,65)-6-carboxymethyl-2-hydroxy-2,4,4- trimethylmorpholinium) chloride is a relatively potent competitive inhibitor (Ki = 0.89 mM) of pigeon breast carnitine acetyltransferase (CAT) and of the crude rat liver CAT (Ki = 4.72 mM) but is neither an inhibitor nor an effective substrate for purified rat liver carnitine palmitoyltransferase (CPT). It does not inhibit state 3 oxygen consumption in isolated hepatic mitochondria using palmitoyl-CoA or palmitoylcarnitine as substrates. This compound is a reaction intermediate analogue of the proposed tetrahedral intermediate for acetyl transfer between acetylcarnitine and CoASH. Because the hemiketal carbon is chiral, a suggestion is made that one of the enantiomers has the same relative configuration as the proposed tetrahedral intermediate.  相似文献   

7.
D. R. Thomas  C. Wood  C. Masterson 《Planta》1988,173(2):263-266
Mitochondria from pea (Pisum sativum L.) seeds were separated into two fractions, mitoplasts (intact inner membrane) and the outer-membrane fraction. The mitoplasts only oxidised palmitate in the presence of carnitine and added outermembrane fraction. Mitoplasts were able to oxidise palmitoylCoA in the presence of carnitine and added outer-membrane fraction had no effect on this oxidation. It was concluded that a long-chain acylCoA synthetase (EC 6.2.1.3) was located on the outer membrane and that the activity of this enzyme in assays was more than sufficient to account for any observed rate of O2 uptake during palmitate oxidation by pea mitochondria. The location of carnitine long-chain acyltransferase (carnitine palmitoyl transferase EC 2.3.1.21) would appear to be the mitoplast i.e. the inner mitochondrial membrane, and confirms the previous work at Newcastle.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

8.
1. Fluorimetric assays are described for CoASH, acetyl-CoA and long-chain fatty acyl-CoA, and are sensitive to at least 50mumumoles of each. 2. Application of these assays to rat-liver mitochondria oxidizing palmitate in the absence and presence of carnitine indicated two pools of intramitochondrial CoA. One pool could be acylated by palmitate and ATP, and the other pool acylated by palmitate with ATP and carnitine, or by palmitoylcarnitine alone. 3. The intramitochondrial content of acetyl-CoA is increased by the oxidation of palmitate both in the absence and presence of l-malate. 4. The conversion of palmitoyl-CoA into acetyl-CoA by beta-oxidation takes place without detectable accumulation of acyl-CoA intermediates.  相似文献   

9.
Kitada  Yasuyuki 《Chemical senses》1991,16(1):95-104
Single water fibers of the frog glossopharyngeal nerve respondto low concentrations of CaCl2 (1–2 mM) and to relativelyhigh concentrations of NaCl(>80 mM). However, stimulationby a mixture with a low concentration of CaCl2 and relativelyhigh concentration of NaCl gives rise to only a small response,suggesting that the effects of Ca2+ and Na+ are mutually antagonistic.It has been reported that Na+ inhibits the response to Ca2+by competing with Ca2+ for a calcium receptor site (XCa; Kitadaand Shimada, 1980). In the present study, it was found tha Ca2+inhibited the response to Na+. Therefore, the sodium receptorsite (XNa) responsible for the response to Na is different fromXCa. The inhibition of the response to Na+ by Ca2+ was examinedquantitatively on the assumption that the magnitude of the neuralresponse is proportinal to the amount of NaXNa complex minusa constant (the threshold concentration of the NaXNa complex).The results obtained indicate that Ca2+ competes with Na+ forXNa. The apparent dissociation constants for the NaXNa complexand the CaXNa complex obtained from the present study were 1.0M and 1.2 x 10-3 M, respectively, XNa as proposed here, doesnot represent simply a binding site for cations since therecan be competition for XNa by an antagonistie cation. The highaffinity of XNa for Ca2+ suggests that XNa is a specific receptorsite involved in salt-taste reception. Since Mg2+ did not affectthe response to Na+, the affinity of XNa for cations is notcharge-specific but is, rather, chemically specific. The presentresults indicate that both Ca2+ and Na+ have a dual action,being involved both in excitation and in inhibition, in waterfibers of the frog glossopharyngeal nerve.  相似文献   

10.
AlF4-is known to generate oscillations in intracellular Ca2+ concentration ([Ca2+]i) by activating G proteins in many cell types. However, in rat pancreatic acinar cells, AlF4--evoked [Ca2+]i oscillations were reported to be dependent on extracellular Ca2+, which contrasts with the [Ca2+]i oscillations induced by cholecystokinin (CCK). Therefore, we investigated the mechanisms by which AlF4- generates extracellular Ca2+-dependent [Ca2+]i oscillations in rat pancreatic acinar cells. AlF4--induced [Ca2+]i oscillations were stopped rapidly by the removal of extracellular Ca2+ and were abolished on the addition of 20 mM caffeine and 2 µM thapsigargin, indicating that Ca2+ influx plays a crucial role in maintenance of the oscillations and that an inositol 1,4,5-trisphosphate-sensitive Ca2+ store is also required. The amount of Ca2+ in the intracellular Ca2+ store was decreased as the AlF4--induced [Ca2+]i oscillations continued. Measurement of 45Ca2+ influx into isolated microsomes revealed that AlF4-directly inhibited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The activity of plasma membrane Ca2+-ATPase during AlF4- stimulation was not significantly different from that during CCK stimulation. After partial inhibition of SERCA with 1 nM thapsigargin, 20 pM CCK-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+. This study shows that AlF4- induces [Ca2+]i oscillations, probably by inositol 1,4,5-trisphosphate production via G protein activation but that these oscillations are strongly dependent on extracellular Ca2+ as a result of the partial inhibition of SERCA. cholecystokinin; plasma membrane adenosine 5'-triphosphatase; G proteins; caffeine  相似文献   

11.
Kitada  Yasuyuki 《Chemical senses》1989,14(4):487-502
In the frog glossopharyngeal nerve, single water fibers respondto low CaCl2 (1–2 mM) and relatively high MgCl2 (100 mM).In the present study, it was found that stimulation by a mixtureof low CaCl2 and relatively high MgCl2 led to a small response.This suggests that the Ca+ response is inhibited by the presenceof Mg2+ and the Mg2+ response is inhibited by the presence ofCa2+. Hence, it is suggested that there are different receptorsites for divalent cations in single water fibers of the frogglossopharyngeal nerve, a calcium receptor site (XCa) responsiblefor the Ca2+ response and a magnesium receptor site (XMg) responsiblefor the Mg2+ response. It has been reported that Mg2+ inhibitsthe Ca2+ response by competing with Ca2+ for XCa (Kitada andShimada, 1980). In the present study, the inhibition of theMg2+ response by Ca2+ was examined quantitatively under theassumption that the magnitude of the neural response is proportionalto the amount of MgXMg complex minus a constant (the thresholdconcentration of the MgXMg complex). The results obtained indicatethat Ca2+ competes with Mg2+ for XMg. The apparent dissociationconstants for MgXMg complex and CaXMg complex, which were obtainedfrom the present study, were 8.0 x 10–2 M and 7.2 x 10–4M, respectively. Thus, competition between Ca+ and Mg2+ forthe distinct receptor sites involved in taste reception wasdemonstrated by the results described in this paper. Since thedivalent cations do not always bring about activation of tastereceptors, the responses to salts in the frog glossopharyngealnerve cannot be explained in terms of changes in the surfacepotential outside the taste cells. The present results suggestthat there exist multiple specific receptor sites for cationsinvolved in salt taste responses, and only the binding of eachseparate cation to its appropriate receptor sites leads to activationof the receptor and the initiation of impulses in sensory nerveendings.  相似文献   

12.
Glycine as a substrate for photorespiration   总被引:1,自引:0,他引:1  
Substrates for photorespiration were examined by feeding 14Clabeled compounds to tobacco and corn leaf segments and by measuring14CO2 evolution in light and darkness. CO2 release in the darkwas rapid, but in light CO2 release was slow due to refixationby photosynthesis. Carboxyl labeled glycine was more rapidlydecarboxylated than were glyoxylate, glycolate or serine. Hydroxypyridinemethanesulfonate, an inhibitor of glycolate oxidase, blocked CO2 releasefrom glycolate but not from glycine. Isonicotynyl hydrazideblocked CO2 release from both glycine and glycolate. DCMU blockedphotosynthetic refixation of the released CO2, consequentlythe rates of CO2 release in light and dark were about equal.It was concluded that CO2 release during photo-respiration camefrom the conversion of 2 molecules of glycine to one serineand one CO2. 14CO2 release from glycine-l-14C in the dark or with DCMU inlight can be used as an assay for photorespiration ability. CO2 release from glycine and glycolate by corn leaf segmentsin the dark proceeded at the rate of that in normal tobaccoleaf. This result, together with other work on O2 exchange andenzymatic analysis, indicates that corn and other plants docarry on photorespiration, but it is not manifested by CO2 releasein light. A yellow tobacco mutant, Consolation 402, had high rates ofphotorespiration by the 14CO2 assay, nearly half (or more) asmany peroxisomes as chloroplasts, and high rates of CO2 releasefrom glycine-l-14C or glycolate-l-14C. A common tobacco, BrightYellow, had lower rates of photorespiration, fewer visible peroxisomes,and slower decarboxylation of glycine and glycolate. The amount of 14CO2 release from glycine-l-14C or glycolate-l-14Cincreased only slightly when the temperature was raised from25 to 35°C. 1Parts of this work were abstracted at the Annual Meeting (April,1969) of Japanese Society of Plant Physiologists, Kanazawa 2Department of Biochemistry, Michigan State University, EastLansing, Michigan, U.S.A. (Received September 3, 1969; )  相似文献   

13.
Epidermal strips from either well-watered or water-stressedplants of Commelina communis L. were subjected to a range ofABA concentrations (10–6–10–3 mol m–3)in the presence (330 parts 10–6 in air) or virtual absence(3 parts 10–6 in air) of CO2. The stomatal response toCO2 was greater in epidermis from water-stressed plants, althoughthere was a distinct CO2 response in epidermis from well-wateredplants. Additions of ABA via the incubation medium had littleeffect on the relative CO2 response. Stomata responded to ABAboth in the presence and virtual absence of CO2, but the relativeresponse to ABA was greatest in the high CO2 treatment. Whenwell-watered plants were sprayed with a 10–1 mol m–3ABA solution 1 d prior to use, the stomatal response of detachedepidermis to both CO2 and ABA was very similar to that of epidermisdetached from water-stressed leaves. It is hypothesized thata prolonged exposure to ABA is necessary before there is anymodification of the CO2 response of stomata.  相似文献   

14.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

15.
Well-nodulated soya bean (Glycine max L.) plants were allowedto assimilate 13CO2 for 10 h in the light, under steady-stateconditions in which CO2 concentration and 13C abundance wereboth strictly controlled at constant levels. The respiratoryevolution of 13CO2 from roots and nodules and 13C incorporationinto various metabolic fractions were measured during the 13CO2feeding and subsequent 48 h chase period. CO2 respired from nodules was much more rapidly labelled with13C than that from roots. The level of labelling (percentageof carbon currently assimilated during the 13COM2 feeding period)of CO2 respired from nodules reached a maximum of about 87 percent after 4 h of steady-state l3CO2 assimilation and thereafterremained fairly constant. The absolute amount of labelled carbonevolved by the respiration of the nodules during the 10 h 13CO2feeding period was 1·5-fold that of root respiration.These results demonstrated that the currently assimilated (labelled)carbon was preferentially used to support nodule respiration,while root respiration relied considerably on earlier (non-labelled)carbon reserved in the roots. Sucrose pools were mostly composed of currently assimilatedcarbon in all tissues of the plants, since the levels of labellingaccounted for 86–91 per cent at the end of the 13CO2 feeding.In the nodules, the kinetics and levels of sucrose labellingwere in fairly good agreement with those of respired CO2, whilein the roots, the level of labelling of respired CO2 was significantlylower than that of sucrose. Succinate and malate were highly labelled in both roots andnodules but they were labelled much more slowly than sucroseand respired CO2. The kinetics and levels of labelling of theseKrebs cycle intermediates resembled those of major amino acidswhich are derived directly from Krebs cycle intermediates. Itis suggested that large fractions of organic acids in noduleswere physically separate from the respiration site. Glycine max L., Soya bean, 13CO2 assimilation, respiratory evolution of 13CO2, carbon metabolism in root nodules  相似文献   

16.
The influences of Ca2+-free solutions and increasing K+ concentrationson the H14CO3 influx capacity of Chara corallina wereinvestigated. It was found that contact with Ca2–freesolutions resulted in a gradual reduction in the H14CO3influx capacity of these cells. Recovery of this influx capacity,following the return of Ca2+ to the experimental solution, followeda ‘mirror-image’ of the time course of decay. Potassium concentrations above a certain critical value (2 mM)induced a rapid reduction in H14CO3 influx capacity.Normal activity was recovered within 60–90 min followingthe return to 0.2 mMK+ solutions. It was also shown that 10mM K+ can be used to determine the relative contribution of14C supplied by diffusion of 14CO2 and transport of H14CO3.The Ca2+ and K+ results are discussed in relation to the effectsof these treatments on the electrical properties of the plasmalemma.  相似文献   

17.
H+ translocation driven by NO3, NO2 and N2O reductionswith endogenous substrates in cells of Rhodopseudomonas sphaeroidesforma sp. denitrificans was investigated by the oxidant pulsemethod. Upon injection of nitrogenous oxides to anaerobic cellsin darkness, an alkaline transient in the external medium wasobserved, followed by acidification. The alkaline transientwas enhanced by carbonyl cyanide m-chlorophenylhydrazone. When a viologen dye was used as an electron donor in the presenceof 1 mM Af-ethylmaleimide and 0.1 mM 2-n-heptyl-4-hydroxyquinoline-N-oxideto preclude respiration-linked H+ extrusion, addition of KNO3,KNO2 and N2O caused only a rapid alkalinization. The H+ consumptionstoichiometries, H+/2e ratios for NO3 reductionto NO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were –1.90, –3.18 and –2.04, respectively.These values agreed well with the fact that all reductions ofnitrogenous oxides in denitrification occur on the periplasmicside of the cytoplasmic membrane. When corrected for H+ consumption in the periplasm, the H+ extrusionstoichiometries, H+/2e ratios with endogenous substratesin the presence of K+/valinomycin for NO3 reduction toNO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were 4.05, 4.95 and 6.01, respectively. (Received August 4, 1982; Accepted January 13, 1983)  相似文献   

18.
Compartmental analysis of 35SO2-4 tracer exchange kinetics hasbeen used to estimate unidirectional fluxes and compartmentcontents in excised root and leaf tissue of the tropical legume,Macroptilium atropurpureum. In excised root tissue only 5% ofthe sulphate taken up across the plasmalemma was reduced toorganic forms whereas in excised leaf tissue approximately 20%was reduced. It was necessary, therefore, to incorporate themetabolism of sulphate during the course of the experiment intothe compartmental models. In root tissue, wash-out data was fitted by three exponentials,assumed to correspond to exchange in the extracellular spaces,cytoplasm and vacuole, but in leaf tissue two large, slowlyexchanging compartments have been postulated in order to achievea fit to the data. It is likely that differences in leaf cellpopulations cause the ‘anomalous’ tracer exchangekinetics and the justification of this assumption is discussed. The fluxes of sulphate at the plasmalemma were greater thanthe corresponding fluxes at the tonoplast in both roots andleaves. The flux of SO2-4 from the cytoplasm to the externalsolution did not appear to limit the loss of SO2-4 from thevacuole. At an external SO2-4concentration of 0.25 mol m-3 therate constants for exchange in the vacuole were two orders ofmagnitude greater in roots than in the slowest exchanging leafcell population. It is possible, therefore, that the slow lossof SO2-4 from leaf cell vacuoles may limit the redistributionof sulphate during S-stress. Key words: Compartmental analysis, sulphate, deficiency, Macroptilium atropurpureum  相似文献   

19.
The hypothesis that light- and oxygen-induced proteolysis inchloroplasts is mediated by active oxygen species was examined.In order to determine whether or not H2O2 and/or {dot}OH radicalsare involved in these degradative processes we compared thedegradation of proteins in isolated oat chloroplasts exposedto white light at 80 W m-2 with that in chloroplasts incubatedin darkness in the absence or presence of H2O2 or a {dot}OH-generatingsystem composed by ascorbic acid, FeCl3 and H2O2 (Asc-Fe-H2O2).Light enhanced the rate of degradation of at least 18 polypeptides,while proteolysis was almost negligible in darkness in the abscenceof additives. H2O2 had a very small effect. However, Asc-Fe-H2O2-treatedchloroplasts in darkness showed a pattern of protein degradationalmost identical to that observed in the light. A thylakoid-boundendopeptidase (EP), the activity of which increased under photooxidativeenvironmental conditions and treatment with an {dot}OH-generatingsystem, was partially purified and characterized as a serinetypeprotease. Treatments with inhibitors of serine-type proteaseprevented both light- and Asc- Fe-H2O2-induced proteolysis.EP was more active against both soluble and membranous proteinsthat had been pretreated with Asc-Fe-H2O2 than against untreatedproteins. It is proposed that a high dose of light irradiationpromotes proteolysis by increasing the formation of {dot}OH,which may modify proteins such that they become more susceptibleto EP-catalyzed hydrolysis. 1Fisiología Vegetal, Dept. de Biología Vegetal,Universidad de Alcalá de Henares, Present address: 28871Alcalá de Henares (Madrid), España.  相似文献   

20.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号