首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase iota (Pol iota) of mammals is a member of the Y family of DNA polymerases. Among many other genome caretakers, these enzymes are responsible for maintaining genome stability. The members of the Y-family DNA polymerases take part in translesion DNA synthesis, bypassing some DNA lesions, and are characterized by low fidelity of DNA synthesis. A unique ability of Pol iota to predominantly incorporate G opposite T allowed us to identify the product of this enzyme among those synthesized by other DNA polymerases. This product can be called a "false note" of Pol iota. We measured the enzyme activity of Pol iota in crude extracts of cells from different organs of five inbred strains of mice (N3H/Sn, 101/H, C57BL/6, BALB/c, 129/J) that differed in a number of parameters. The "false note" of Pol iota was clearly sounding only in the extracts of testis and brain cells from four analyzed strains: N3H/Sn, 101/H, C57BL/6, BALB/c. In mice of 129/J strain that had a nonsense mutation in the second exon of the pol iota gene, the Pol iota activity was reliably detectable only in the extracts of brain. The data show that the active enzyme can be formed in some cell types even if they carry a nonsense mutation in the pol iota gene. This supports tissue-specific regulation of pol iota gene expression through alternative splicing. A semiquantitative determination of pol iota activity in mice strains different in their radiosensitivity suggests a reciprocal correlation between the enzyme activity of pol iota in testis and the resistance of mice to radiation.  相似文献   

2.
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.  相似文献   

3.
DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.  相似文献   

4.
Analysis of DNA polymerase iota (Pol iota) enzymic activity in different classes of eukaryotes has shown that error-prone activity of this enzyme can be found only in mammals, and that it is completely absent from organisms that are at lower stages of development. It was supposed that the emergence of the error-prone Pol iota activity in mammals is caused by structural alteration of the active center. Possible functions of error-prone Pol iota in higher eukaryotes are discussed.  相似文献   

5.
Enzymatic activity of DNA polymerase iota (Pol t) was analyzed in human uveal melanoma cell extracts, using an earlier elaborated approach. The Pol t activity was observed in seven out of eight malignant tumors, while it was absent in the normal uveal tract cells of the same patients. These findings serve as an additional confirmation of the Pol t oncogenic potential.  相似文献   

6.
Enzymatic activity of DNA polymerase iota (Pol ι) was analyzed in human uveal melanoma cell extracts, using an earlier elaborated approach. The Pol ι activity was observed in seven out of eight malignant tumors, while it was absent in the normal uveal tract cells of the same patients. These findings serve as an additional confirmation of the Pol ι oncogenic potential.  相似文献   

7.
DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Pol(iota), encoded by the RAD30B gene. We show that human Pol(iota) violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Pol(iota) preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Pol(iota) compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Pol(iota) to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Pol(iota) copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Pol(iota) incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Pol(iota) in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Pol(iota) may additionally play a specialized function in human biology.  相似文献   

8.
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.  相似文献   

9.
UVB (280-320 nm) and UVC (200-280 nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is a DNA damage-tolerant and error-prone DNA polymerase encoded by the POLH (XPV) gene in humans. Another member of the Y family of error-prone DNA polymerases is POLI encoding DNA polymerase iota (Pol iota). In order to clarify the specific role of Pol iota in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells, similar as we have previously done for Pol eta. Synthetic RNA duplexes were used to efficiently inhibit Pol iota expression in 293 T cells. The supF shuttle vector was irradiated with 254 nm UVC and replicated in 293 T cells in presence of anti-Pol iota siRNA. Surprisingly, there was a consistent reduction of recovered plasmid from cells with Pol iota knockdown and this was independent of UV irradiation of the plasmid. The supF mutant frequency was unchanged in the siRNA knockdown cells relative to control cells confirming that Pol iota does not play an important role in UV mutagenesis. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Neither the type of mutations nor their distribution along the supF gene were significantly different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. These results show that Pol iota has no significant role in UV lesion bypass and mutagenesis in vivo and provides some initial data suggesting that this polymerase may be involved in replication of extrachromosomal DNA.  相似文献   

10.
11.
Genes coding for DNA polymerases eta, iota and zeta, or for both Pol eta and Pol iota have been inactivated by homologous recombination in the Burkitt's lymphoma BL2 cell line, thus providing for the first time the total suppression of these enzymes in a human context. The UV sensitivities and UV-induced mutagenesis on an irradiated shuttle vector have been analyzed for these deficient cell lines. The double Pol eta/iota deficient cell line was more UV sensitive than the Pol eta-deficient cell line and mutation hotspots specific to the Pol eta-deficient context appeared to require the presence of Pol iota, thus strengthening the view that Pol iota is involved in UV damage translesion synthesis and UV-induced mutagenesis. A role for Pol zeta in a damage repair process at late replicative stages is reported, which may explain the drastic UV-sensitivity phenotype observed when this polymerase is absent. A specific mutation pattern was observed for the UV-irradiated shuttle vector transfected in Pol zeta-deficient cell lines, which, in contrast to mutagenesis at the HPRT locus previously reported, strikingly resembled mutations observed in UV-induced skin cancers in humans. Finally, a Pol eta PIP-box mutant (without its PCNA binding domain) could completely restore the UV resistance in a Pol eta deficient cell line, in the absence of UV-induced foci, suggesting, as observed for Pol iota in a Pol eta-deficient background, that TLS may occur without the accumulation of microscopically visible repair factories.  相似文献   

12.
Pol kappa and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Pol kappa. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Pol zeta) and with two other Y-family polymerases, Pol iota and Pol eta. Mouse Pol kappa, Rev7, Pol iota and Pol eta each bind to the same approximately 100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Pol kappa for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Pol kappa, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined.  相似文献   

13.
Several low fidelity DNA polymerases participate in generating mutations in immunoglobulin genes. Polymerase eta is clearly involved in the process by causing substitutions of A:T base pairs, whereas polymerase iota has a controversial role. Although the frequency of mutations was decreased in the BL2 cell line deficient for polymerase iota, hypermutation was normal in the 129 strain of mice, which has a natural nonsense mutation in the Poli gene. It is possible that the mice compensated for the defect over time, or that polymerase eta substituted in the absence of polymerase iota. To examine polymerase iota in a genetically defined background, we backcrossed the 129 nonsense mutation to the C57BL/6 strain for six generations. Class switch recombination and hypermutation were studied in these mice and in congenic mice doubly deficient for both polymerases iota and eta. The absence of both polymerases did not affect production of IgG1, indicating that these enzymes are not involved in switch recombination. Poli(-/-F6) mice had the same types of nucleotide substitutions in variable genes as their C57BL/6 counterparts, and mice doubly deficient for polymerases iota and eta had the same mutational spectrum as Polh-/- mice. Thus, polymerase iota did not contribute to the mutational spectra, even in the absence of polymerase eta.  相似文献   

14.
The 1,N6-ethenodeoxyadenosine (epsilon dA) lesion is promutagenic and has been implicated in carcinogenesis. We show here that human Pol iota, a Y-family DNA polymerase, can promote replication through this lesion by proficiently incorporating a nucleotide opposite it. The structural basis of this action is rotation of the epsilon dA adduct to the syn conformation in the Pol iota active site and presentation of its 'Hoogsteen edge' for hydrogen-bonding with incoming dTTP or dCTP. We also show that Pol zeta carries out the subsequent extension reaction and that efficiency of extension from epsilon dA x T is notably higher than from epsilon dA x C. Together, our studies reveal for the first time how the exocyclic epsilon dA adduct is accommodated in a DNA polymerase active site, and they show that the combined action of Pol iota and Pol zeta provides for efficient and error-free synthesis through this potentially carcinogenic DNA lesion.  相似文献   

15.
Human DNA polymerase iota (Pol iota) differs from other DNA polymerases in that it exhibits a marked template specificity, being more efficient and accurate opposite template purines than opposite pyrimidines. The crystal structures of Pol iota with template A and incoming dTTP and with template G and incoming dCTP have revealed that in the Pol iota active site, the templating purine adopts a syn conformation and forms a Hoogsteen base pair with the incoming pyrimidine which remains in the anti conformation. By using 2-aminopurine and purine as the templating residues, which retain the normal N7 position but lack the N(6) of an A or the O(6) of a G, here we provide evidence that whereas hydrogen bonding at N(6) is dispensable for the proficient incorporation of a T opposite template A, hydrogen bonding at O(6) is a prerequisite for C incorporation opposite template G. To further analyze the contributions of O(6) and N7 hydrogen bonding to DNA synthesis by Pol iota, we have examined its proficiency for replicating through the (6)O-methyl guanine and 8-oxoguanine lesions, which affect the O(6) and N7 positions of template G, respectively. We conclude from these studies that for proficient T incorporation opposite template A, only the N7 hydrogen bonding is required, but for proficient C incorporation opposite template G, hydrogen bonding at both the N7 and O(6) is an imperative. The dispensability of N(6) hydrogen bonding for proficient T incorporation opposite template A has important biological implications, as that would endow Pol iota with the ability to replicate through lesions which impair the Watson-Crick hydrogen bonding potential at both the N1 and N(6) positions of templating A.  相似文献   

16.
Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg2+ or Mn2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established.  相似文献   

17.
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.  相似文献   

18.
19.
Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF)-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E. coli, modification of the third guanine of two target sequences, 5'-GGG-3' (3G) and 5'-GGCGCC-3' (NarI site), induces -1 and -2 frameshift mutations, respectively. Using an in vitro assay for translesion synthesis, we investigated the biochemical control of these events. We showed that Pol eta, but neither Pol iota nor Pol zeta, plays a major role in the frameshift bypass of the AAF adduct located in the 3G sequence. By complementing PCNA-depleted extracts with either a wild-type or a non-ubiquitinatable form of PCNA, we found that this Pol eta-mediated pathway requires Rad18 and ubiquitination of PCNA. In contrast, when the AAF adduct is located within the NarI site, TLS is only partially dependent upon Pol eta and Rad18, unravelling the existence of alternative pathways that concurrently bypass this lesion.  相似文献   

20.
Takeda A  Tamano H  Kan F  Hanajima T  Yamada K  Oku N 《Life sciences》2008,82(17-18):909-914
Neuropsychological behavior via activation of the hypothalamic-pituitary-adrenal (HPA) axis was analyzed using young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was significantly increased after 2-week zinc deprivation, whereas zinc concentration in the brain was not decreased. In the resident-intruder test, the rate of mice that exhibited aggressive behavior to the total mice was significantly higher in isolated zinc-deficient mice than in isolated control mice. The duration of aggressive behavior was more in isolated zinc-deficient mice. These results indicate that aggressive behavior of young mice elicited by social isolation is enhanced by zinc deficiency. On the other hand, social isolation-induced aggressive behavior was enhanced in isolated pair-fed mice with food restriction that can activate the HPA axis. Serum corticosterone concentration was also significantly higher in isolated zinc-deficient mice. To see the effect of the increased serum corticosterone on behavioral abnormality, neurotransmitter concentrations in brain tissue were checked. The concentrations of glutamate and GABA in brain tissue were significantly higher in both grouped and isolated zinc-deficient mice. Furthermore, the concentration of extracellular glutamate in the amygdala before the resident-intruder test was significantly higher in isolated zinc-deficient (aggressive) mice and the higher concentration was maintained during the test. The changes in neurotransmitter homeostasis, probably via the increase in serum corticosterone, seem to be linked to aggressive behavior elicited by social isolation in zinc deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号