首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of the nuclear protein cyclin (MW 36 000) and DNA in quiescent mouse fibroblasts is coordinately induced by serum and purified growth factors. Inhibition of DNA synthesis by hydroxyurea or aphidicolin in serum-stimulated quiescent cells does not affect the induction of cyclin. The levels of cyclin synthesis decrease rapidly at the end of the S phase. Immunofluorescence studies reveal that there are dramatic changes in the nuclear distribution of cyclin during S phase and that these depend on DNA synthesis or events during S phase. These observations strengthen the notion that cyclin is an important component of the events leading to DNA replication.  相似文献   

2.
Synthesis of cyclin in serum-stimulated quiescent 3T3 cells increases shortly before DNA synthesis after 10 h of stimulation, reaching a maximum after 16 h. Inhibition of DNA synthesis by hydroxyurea does not affect the increase of cyclin following stimulation, as determined by quantitative two-dimensional gel electrophoresis. The levels of cyclin decrease dramatically at the end of the S-phase. Cells kept in the presence of hydroxyurea (G1/S boundary) do not show this decrease in cyclin, indicating that its amounts are regulated by events occurring during the S-phase. Immunofluorescence studies of serum-stimulated quiescent cells in the presence of hydroxyurea, using proliferating cell nuclear antigen (PCNA) autoantibodies, confirm the results obtained by protein analysis. They also reveal that there are dramatic changes in the nuclear distribution of cyclin and that these depend on DNA synthesis or events occurring during the S-phase. Cyclin (PCNA) is no longer detectable at the end of the S-phase. However, pulse-chase experiments indicate that this protein is very stable, suggesting that it possibly interacts with other macromolecules rendering it inaccessible to the antibody. These results strengthen the notion that cyclin is an important component of the events leading to DNA replication and cell division.  相似文献   

3.
R Bravo 《FEBS letters》1984,169(2):185-188
Quantitative two-dimensional gel electrophoretic analysis (IEF) of the nuclear polypeptide cyclin together with autoradiographic studies have revealed a coordinate synthesis of cyclin and DNA after serum stimulation of quiescent 3T3 cells. These results strengthen the notion that cyclin may be a central component of the pathway(s) that regulate cell proliferation.  相似文献   

4.
Dual effect of activin A on cell growth in Balb/c 3T3 cells   总被引:5,自引:0,他引:5  
Effects of activin A on cell growth were studied in Balb/c 3T3 cells. When incubated with serum, activin A inhibited serum-induced increase in DNA synthesis in a concentration-dependent manner. Activin A also inhibited serum-induced increase in cell number. When added in quiescent cells, activin A did not affect competence-inducing activity of PDGF. Activin A by itself had a small competence-inducing activity. In contrast, when added in competent cells, activin A inhibited progression activity of platelet-poor plasma. These results indicate that activin A has dual action on cell proliferation in Balb/c 3T3 cells.  相似文献   

5.
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional polypeptide that regulates the proliferation and differentiation of various types of animal cells. TGF-beta 1 stimulated glucose uptake and the expression of a brain-type glucose transporter (GLUT1) mRNA in quiescent mouse 3T3 cells. TGF-beta 1 also synergistically stimulated these activities when given together with calf serum, phorbol ester, fibroblast growth factor, or epidermal growth factor. The increases in glucose uptake and the GLUT1 mRNA level were induced by picomolar concentrations of TGF-beta 1 within 3 h of stimulation, reached a peak between 6 and 9 h, and then decreased gradually to basal levels before an increase in DNA synthesis. The stimulation of GLUT1 mRNA expression was completely abolished by actinomycin D, but was not affected by cycloheximide, suggesting that new protein synthesis was not required for the expression of GLUT1 mRNA. TGF-beta 1 had little mitogenic activity and did not affect serum-induced DNA synthesis in quiescent 3T3 cells. However, it stimulated DNA synthesis synergistically when given with fibroblast growth factor, epidermal growth factor, phorbol ester, or insulin. These results suggest that TGF-beta 1 mediates the stimulation of glucose uptake, GLUT1 mRNA expression, and DNA synthesis via a pathway(s) and cellular components distinct from those for other growth factors. The possible role of the TGF-beta 1-induced stimulation of glucose transport activity in the control of mouse fibroblast proliferation is also discussed.  相似文献   

6.
The effect of serum and growth factors [platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)] on the synthesis of the nuclear protein cyclin and its correlation with DNA synthesis has been studied in quiescent mouse 3T3 cells by means of quantitative two-dimensional gel electrophoresis. Serum must be present in the medium for at least 8-12 h to induce maximal synthesis of cyclin (6- to 7-fold increase compared with quiescent cells). The stimulation of cyclin synthesis is dose-dependent and correlates directly with DNA synthesis. In addition, partially purified PDGF and FGF also induce cyclin and DNA synthesis in a coordinate way. Both growth factors, like serum, exhibit a similar lag phase to induce maximal cyclin (6- to 7-fold) and DNA synthesis (90% of the cells). Pure PDGF at a concentration as low as 10 ng/ml has the same effect as 10% serum. The coordinate induction of cyclin and DNA synthesis can only be observed with growth factors that induce DNA synthesis. These results strengthen the notion that cyclin is an essential component of the events leading to DNA replication.  相似文献   

7.
Growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I) are required for quiescent 3T3 cells to proliferate, but zinc deprivation impairs IGF-I-induced DNA synthesis. We recently showed that labile intracellular pool of zinc is involved in cell proliferation. Our objective was to determine whether the labile intracellular pool of zinc plays a role in growth factor (PDGF, EGF, and IGF-I)-stimulated proliferation of 3T3 cells. Quiescent 3T3 cells were cultured in DMEM with or without growth factors. Labile intracellular pool of zinc, DNA synthesis, and cell proliferation were assessed using fluorescence microscopy, 3H-thymidine incorporation, and total cell number counts, respectively. After 24 h, growth factors stimulated DNA synthesis (24%) but not cell proliferation. After 48 h, growth factors stimulated both DNA synthesis (37%) and cell proliferation (89%). In response to growth factor stimulation, the labile intracellular pool of zinc was also elevated after 24 or 48 h of treatment. In summary, growth factor (PDGF, EGF, and IGF-I)-stimulated increase in DNA synthesis and cell proliferation were accompanied by an elevated labile intracellular pool of zinc in 3T3 cells. Since elevation of the labile intracellular pool of zinc occurred along with increased DNA synthesis, but cell proliferation remained unchanged, the elevation of the labile intracellular pool of zinc likely occurred during the S phase to provide the zinc needed to support DNA synthesis and ultimately cell proliferation.  相似文献   

8.
9.
Hexose uptake and control of fibroblast proliferation   总被引:1,自引:0,他引:1  
The role of glucose uptake in control of cell growth was studied by experimentally varying the rate of glucose uptake and examining the subsequent effect on initiation and cessation of cell proliferation. The rate of glucose uptake was varied by adjusting the concentration of glucose in the culture medium. This permitted analysis of two changes in rate of glucose uptake which are closely related to the regulation of cell growth: (1) the rapid increase in glucose uptake that can be detected within several minutes after mitogenic stimulation of quiescent fibroblasts and (2) the decrease in glucose uptake which accompanies growth to a quiescent state. Quiescent cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to fresh serum-containing medium with either the normal amount of glucose or a reduced level that lowered the rate of glucose uptake below the rate characteristic of quiescent control cells. The subsequent increases in cell number were equal in both media, demonstrating that the increase in glucose uptake, commonly observed after mitogenic stimulation, was not necessary for initiation of cell division. Measurements of intracellular D-glucose pools after serum stimulation of quiescent cells revealed that the increase in glucose uptake was not accompanied by a detectable change in the intracellular concentration of glucose. Nonconfluent growing cultures of mouse 3T3, human diploid foreskin and secondary chick embryo cells were switched to low glucose media, lowering the rate of glucose uptake below levels observed for quiescent cells. This did not affect rates of DNA synthesis or cell division over a several-day period. Thus, the decrease in glucose uptake, which usually occurs at about the same time as the decrease in DNA synthesis as cells grow to quiescence, does not cause the decline in cell proliferation. Experiments indicated that there was no set temporal relationship between the decline in glucose uptake and DNA synthesis as cells grew to quiescence. The sequence was variable and probably depended on the cell type as well as culture conditions. Measurements of intracellular D-glucose pools in secondary chick embryo cells demonstrated that the internal concentration of glucose in these cells did not significantly vary during growth to quiescence. Taken together, our results show that these fluctuations in the rate of glucose uptake do not lead to detectable changes in the intracellular concentration of glucose and that they do not control cell proliferation rates under usual culture conditions.  相似文献   

10.
11.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

12.
The receptor-generated signals that are responsible for driving the cell cycle are incompletely characterised in mammalian cells. It is clear, however, that the cellular messenger systems that stimulate DNA synthesis and mitosis are separable. These are interwoven with biochemical checkpoints that ensure that processes, such as chromosomal replication and microtubule attachment to duplicated chromosomes, are complete before the following phase of the cell cycle is initiated. In some cells, activation of DNA synthesis by factors such as LPA and serum has been shown to require the GTP-binding protein G(i). We have found that G(i) plays an additional role in mitosis activated by both 7-transmembrane receptors and tyrosine kinase receptors, and that this involves the translocation of the alpha-subunit of G(i) (G(ialpha)) to the nucleus. Here we show by confocal microscopy that G(ialpha)migrates to the nucleus near the onset of mitosis in serum-activated Swiss 3T3 cells and binds to the kinetochore region of replicated chromosomes. Inhibition of G(i) function with pertussis toxin had no effect on the induction of DNA synthesis by serum, but cell proliferation was inhibited. Flow cytometric analysis showed that this resulted from retardation of the transition through mitosis and into G(1). Additionally, pertussis toxin impaired the activity of p34(cdc2), a cyclin-dependent kinase involved in the transition from M-phase to G(1), but not the S-phase cyclin, cyclin E. These data show that the G-protein G(i) has a key role in the regulation of mitosis in fibroblasts.  相似文献   

13.
Although variability in the duration of the cell cycle is thought to reflect growth-regulatory processes that control cell cycle progression, the precise timing of the variable period within the G1 phase of the cell cycle has not been defined. In particular, the timing of cell cycle variability in relation to the cell's commitment (R point) to the initiation of DNA synthesis remains controversial. In order to investigate cell cycle variability, indirect immunofluorescence was used to measure the formation of the primary cilium as a possible marker of G1 events in both stimulated quiescent and exponentially growing cells. The primary cilium, an internal "9 + 0" nonmotile structure formed by one of the interphase centrioles, was first detected in postmitotic BALB/c 3T3 cells 5 hr before the initiation of DNA synthesis, an interval similar to that for the reassembly of the primary cilium in serum-stimulated quiescent fibroblasts. This similarity in the timing of ciliation suggests that serum-stimulated quiescent cells reenter the cell cycle in early G1 and recapitulate much of G1. Moreover, the rate of cilia formation in both postmitotic and serum-stimulated quiescent cells was identical to the rate of DNA synthesis initiation. Thus, cell cycle variability occurs before ciliation in both stimulated quiescent and exponentially growing cells. Furthermore, since ciliation also precedes the R point, variability in the centriole cycle occurs before the R point and thus may reflect processes controlling the cell's commitment to the initiation of DNA synthesis.  相似文献   

14.
A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase alpha and delta (aphidicolin) and DNA polymerase beta (2', 3'-dideoxythymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gr) or by gamma-ray irradiation (150 Gr) is more sensitive to aphidicolin independently of cell proliferating status. Aphidicolin inhibits the recovery of single-strand DNA in quiescent and mitogen-stimulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase alpha. It is suggested that the regulation action of mitogens on the DNA SSB repair may be determined by qualitative changes of this enzyme or of some conditions in which it functions. The involvement of DNA polymerase delta in this process is not excluded.  相似文献   

15.
Cyclic AMP is a second messenger for various hormones that inhibits cell multiplication and DNA synthesis in cultured astrocytes. We examined the effects of increasing intracellular cyclic AMP on the catalytic (cdks) and regulatory (cyclins and ckis) components of cyclin-dependent protein kinases, which regulate progression of the cell cycle before completion of DNA synthesis, in primary cultured astrocytes and in an astrocytic cell line C.LT.T.1.1. The amount of cdk4 changed little during the cell cycle and was not affected by cyclic AMP. There was little cdk1 and cdk2 in quiescent cells, and their expression increased during the G1-S phases. Cyclic AMP strongly inhibited cdk1 and cdk2 expression. Transforming growth factor beta also inhibited cdk1 expression in primary astrocytes. Cyclic AMP did not affect the two ckis p27KIP1 and p21CIP1. There was little cyclin D1 in quiescent cells, but it increased during the G1 phase and was reduced by cyclic AMP. Cyclin E increased during the G1-S phases and was not affected by cyclic AMP in primary astrocytes. The amount of cyclin A was low in quiescent cells and increased during the G1-S phases. Expression of its mRNA and protein was inhibited by cyclic AMP. The protein kinase activities associated with complexes of cyclins and cdks were increased by growth factors and prevented by cyclic AMP. We conclude that cyclic AMP inhibits progression of the cell cycle in astrocytes at least by preventing the expression of the regulatory subunits, cyclins D1 and A, and catalytic subunits, cdk1 and cdk2, of cyclin-regulated protein kinases. Key Words: Cyclin-dependent protein kinases-Glial cells-Cyclic AMP.  相似文献   

16.
BACKGROUND: Cellular Ras and cyclin D1 are required at similar times of the cell cycle in quiescent NIH3T3 cells that have been induced to proliferate, but not in the case of cycling NIH3T3 cells. In asynchronous cultures, Ras activity has been found to be required only during G2 phase to promote passage through the entire upcoming cell cycle, whereas cyclin D1 is required through G1 phase until DNA synthesis begins. To explain these results in molecular terms, we propose a model whereby continuous cell cycle progression in NIH3T3 cells requires cellular Ras activity to promote the synthesis of cyclin D1 during G2 phase. Cyclin D1 expression then continues through G1 phase independently of Ras activity, and drives the G1-S phase transition. RESULTS: We found high levels of cyclin D1 expression during the G2, M and G1 phases of the cell cycle in cycling NIH3T3 cells, using quantitative fluorescent antibody measurements of individual cells. By microinjecting anti-Ras antibody, we found that the induction of cyclin D1 expression beginning in G2 phase was dependent on Ras activity. Consistent with our model, cyclin D1 expression during G1 phase was particularly stable following neutralization of cellular Ras. Finally, ectopic expression of cyclin D1 largely overcame the requirement for cellular Ras activity during the continuous proliferation of cycling NIH3T3 cells. CONCLUSIONS: Ras-dependent induction of cyclin D1 expression beginning in G2 phase is critical for continuous cell cycle progression in NIH3T3 cells.  相似文献   

17.
Induction of quiescent BALB/c 3T3 murine fibroblasts by platelet-derived growth factor (PDGF) or fibroblast growth factor (FGFs) is accompanied by induction of c-myc gene expression. To study the role of c-myc in cell growth, we transfected BALB/c 3T3 cells with a plasmid construct containing a glucocorticoid-inducible c-myc gene. When these transfected cells were growth arrested in PDGF-FGF-freedefined medium, glucocorticoid treatment induced S-phase DNA synthesis. This induction of DNA synthesis was inefficient, and cell proliferation was not evident, suggesting that growth factors act through stimulation of c-myc expression together with other intracellular events.  相似文献   

18.
An earlier report indicated that a 26-amino-acid peptide (SA), comprised of the nuclear localization signal (NLS) of fibroblast growth factor-1 (FGF-1) and a membrane-permeable peptide, was able to stimulate DNA synthesis after it was taken up by NIH3T3 fibroblasts. Here, we report that SA, but not a mutant with the NLS motif destroyed, induced DNA synthesis in BALB/c3T3 murine fibroblasts, human vascular endothelial (HUVE) cells, and primary cultured hepatocytes, although the activity was weaker than that of FGF-1. The kinetics of SA-induced DNA synthesis and G1cyclin expression were similar to those elicited by FGF-1, indicating that SA induces cell cycle progression. Kinetic analysis also suggested that SA stimulates only a fraction of the DNA replication in BALB/c3T3 cells. At high cell densities, SA-induced G1cyclin expression and DNA synthesis were more strongly inhibited than those induced by FGF-1. SA did not induce cell division in HUVE and BALB/c3T3 cells and did not interfere with FGF-1-stimulated proliferation of HUVE cells. These results indicate that SA is able to partially induce cell cycle progression through a contact-inhibition sensitive signaling pathway, but it is insufficient to support cell mitosis. We also suggest that signaling by SA does not interfere with that of FGF-1.  相似文献   

19.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

20.
Activation of G(q) protein-coupled receptors can either stimulate or inhibit cell growth. Previously, these opposite effects were explained by differences in the cell models. Here we show that activation of m3 muscarinic acetylcholine receptors ectopically expressed in NIH3T3 cells can cause stimulation and inhibition of growth in the same cell. A clonal cell line was selected from cells that formed foci agonist dependently (3T3/m3 cells). In quiescent 3T3/m3 cells, carbachol stimulated DNA synthesis. In contrast, when 3T3/m3 cells were growing, either due to the presence of serum or after transformation with oncogenic v-src, carbachol inhibited growth. This inhibition was not due to reduction of extracellular signal-regulated kinase activity because carbachol induced extracellular signal-regulated kinase phosphorylation in both quiescent and growing 3T3/m3 cells. Investigating the cell cycle mechanisms involved in growth inhibition, we found that carbachol treatment decreased cyclin D1 levels, increased p21(cip1) expression, and led to hypophosphorylation of the retinoblastoma gene product (Rb). Proteasome inhibitors blocked the carbachol-induced degradation of cyclin D1. Effects on p21(cip1) were blocked by a protein kinase C inhibitor. Thus, m3 muscarinic acetylcholine receptors couple to both growth-stimulatory and -inhibitory signaling pathways in NIH3T3 cells, and the observed effects of receptor activation depend on the context of cellular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号