首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers at 25°C, with a photon flux density of 500 mol m-2s-1. Measurements were made of net CO2 exchange, leaf adenylates (ATP, ADP and AMP), and leaf nicotinamide nucleotides (NAD+, NADP+, NADH, NADPH), over the diurnal period (16h light/8 h dark) and during photosynthetic induction. All the measurements were carried out on recently expanded leaves from 5-week-old plants. When the lights were switched on in the growth chamber, the rate of photosynthetic CO2 uptake, and the levels of leaf ATP and NADPH increased to a maximum in 30 min and remained there throughout the light period. The increase in ATP over the first few minutes of illumination was associated with the phosphorylation of ADP to ATP and the increase in NADPH with the reduction of NADP+; subsequently, the increase in ATP was associated with an increase in total adenylates while the increase in NADPH was associated with an accumulation of NADP+ and NADPH due to the light-driven phosphorylation of NAD+ to NADP+. On return to darkness, ATP and NADPH values decreased much more slowly, requiring 2 to 4 hours to reach minimum values. From these results we suggest that (i) the total adenylate and NADPH and NADP+ (but not NAD+ and NADH) pools increase following exposure to light; (ii) the increase in pool size is not accompanied by any large change in the energy or redox states of the system; and (iii) the measured ratios of ATP/ADP and NADPH/NADP+ for intact leaves are low and constant during steady-state illumination.Abbreviations AEC adenylate energy charge - DHAP dihydroxyacetone phosphate - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide - PES phenazine ethosulfate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - PFD photon flux density - Ru5P ribulose-5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

2.
A method for the identification and quantitation of nucleotide pools in lymphocytes and leukemic blasts is described. Separation of these metabolites was performed by anion-exchange high-performance liquid chromatography using a pH and concentration gradient consisting of several linear steps.The mono-, di- and triphosphates of adenosine, cytidine, guanosine, inosine, uridine and xanthosine could conveniently be separated together with NAD+, cyclic AMP, NADP+ and uridinediphosphoglucose (UDPG).In addition, data on the accuracy and precision of the method are given and its potentials for use in the analysis of nucleotide pools in leukemic lymphoblasts are illustrated.  相似文献   

3.
Higher order chromatin degradation (HOCD) is a stepwise dismantling of the genome through the excision of chromatin loops and their oligomers at matrix attachment regions (MARs) during the early stages of programmed cell death. Although HOCD ultimately leads to the inactivation of the genome and cell death, a partial HOCD in cells receiving sublethal signals may result in the loss of genetic stability leading to neoplasia, degeneration, and aging. The present study was undertaken to determine the role of protein poly(ADP-ribosyl)ation in HOCD. Nuclei isolated from rat glioma C6 cells were able to carry poly(ADP-ribosyl)ation as assessed by the incorporation of 32P-NAD+ into TCA-insoluble fraction. Under the same experimental conditions, millimolar NAD+ induced rapid HOCD in nuclei. However, while poly(ADP-ribosyl)ation was totally abrogated by specific inhibitor, benzamide, NAD+-induced HOCD was unaffected. Benzamide also failed to inhibit HOCD induced by H2O2 exposure in intact cells. These results indicate that HOCD is not mediated through chromatin poly(ADP-ribosyl)ation, and that NAD+ activates MAR-associated endonuclease or facilitates the access of the enzyme to DNA by other mechanisms. Furthermore, other nucleotides including NADP+, ATP, UTP, GTP, and CTP were also found to induce HOCD in isolated nuclei indicating that HOCD is controlled by nucleotide-related ligands.  相似文献   

4.
The expression of glutamate dehydrogenase (GDH; EC 1.4.1.3) in L3 of the nematode Haemonchus contortus was confirmed by detecting GDH mRNA, contrary to earlier reports. The enzyme was active in both L3 and adult H. contortus homogenates either with NAD+/H or NADP+/H as co-factor. Although it was a dual co-factor GDH, activity was greater with NAD+/H than with NADP+/H. The rate of the aminating reaction (glutamate formation) was approximately three times higher than for the deaminating reaction (glutamate utilisation). GDH provides a pathway for ammonia assimilation, although the affinity for ammonia was low. Allosteric regulation by GTP, ATP and ADP of L3 and adult H. contortus and Teladorsagia circumcincta (Nematoda) GDH depended on the concentration of the regulators and the direction of the reaction. The effects of each nucleotide were qualitatively similar on the mammalian and parasite GDH, although the nematode enzymes were more responsive to activation by ADP and ATP and less inhibited by GTP under optimum assay condition. GTP inhibited deamination and low concentrations of ADP and ATP stimulated weakly. In the reverse direction, GTP was strongly inhibitory and ADP and ATP activated the enzyme.  相似文献   

5.
The effect of nicotinamide-adenine dinucleotides (NAD+ and NADP+) on Ca2+ transport in rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+ uptake was dependent on adenosine triphosphate (ATP; 2mM). The presence of NAD+ (2mM) or NADP+ (1 and 2mM) caused a significant inhibition of Ca2+ uptake following addition of 2mM ATP. Ca2+, which accumulated in the nuclei during 6 min after ATP addition, was significantly released by the addition of NAD+ (0.5–2mM) or NADP+ (0.1–2mM). However, the effect of NADH (2mM) or NADPH (2mM) on Ca2+ uptake and release clearly weakened in comparison with the effects of NAD+ and NADP+. Meanwhile, ryanodine (10M), thapsigargin (10M) or oxalate (0.5mM) had no effect on Ca2+ uptake and release in rat liver nuclei. These reagents did not significantly alter the effects of 2mM NAD+ on Ca2+ uptake and release. Thus, NAD+ and NADP+ had a potent effect on Ca2+ transport in rat liver nuclei. The present findings suggest that the liver cytosolic NAD+ (NADP+) is a factor in the regulation of the nuclear Ca2+ concentration. (Mol Cell Biochem121: 127–133, 1993)  相似文献   

6.
NAD+ and NADP+, chemically similar and with almost identical standard oxidation–reduction potentials, nevertheless have distinct roles, NAD+ serving catabolism and ATP generation whereas NADPH is the biosynthetic reductant. Separating these roles requires strict specificity for one or the other coenzyme for most dehydrogenases. In many organisms this holds also for glutamate dehydrogenases (GDH), NAD+-dependent for glutamate oxidation, NADP+-dependent for fixing ammonia. In higher animals, however, GDH has dual specificity. It has been suggested that GDH in mitochondria reacts only with NADP(H), the NAD+ reaction being an in vitro artefact. However, contrary evidence suggests mitochondrial GDH not only reacts with NAD+ but maintains equilibrium using the same pool as accessed by β-hydroxybutyrate dehydrogenase. Another complication is the presence of an energy-linked dehydrogenase driving NADP+ reduction by NADH, maintaining the coenzyme pools at different oxidation–reduction potentials. Its coexistence with GDH makes possible a futile cycle, control of which is not yet properly explained. Structural studies show NAD+-dependent, NADP+-dependent and dual-specificity GDHs are closely related and a few site-directed mutations can reverse specificity. Specificity for NAD+ or for NADP+ has probably emerged repeatedly during evolution, using different structural solutions on different occasions. In various GDHs the P7 position in the coenzyme-binding domain plays a key role. However, whereas in other dehydrogenases an acidic P7 residue usually hydrogen bonds to the 2′- and 3′-hydroxyls, dictating NAD+ specificity, among GDHs, depending on detailed conformation of surrounding residues, an acidic P7 may permit binding of NAD+ only, NADP+ only, or in higher animals both.  相似文献   

7.
K L Menge  F R Bryant 《Biochemistry》1992,31(22):5151-5157
The structurally related nucleoside triphosphates, adenosine triphosphate (ATP), purine riboside triphosphate (PTP), inosine triphosphate (ITP), and guanosine triphosphate (GTP), are all hydrolyzed by the recA protein with the same turnover number (17.5 min-1). The S0.5 values for these nucleotides increase progressively in the order ATP (45 microM), PTP (100 microM), ITP (300 microM), and GTP (750 microM). PTP, ITP, and GTP are each competitive inhibitors of recA protein-catalyzed ssDNA-dependent ATP hydrolysis, indicating that these nucleotides all compete for the same catalytic site on the recA protein. Despite these similarities, ATP and PTP function as cofactors for the recA protein-promoted three-strand exchange reaction, whereas ITP and GTP are inactive as cofactors. The strand exchange activity of the various nucleotides correlates directly with their ability to support the isomerization of the recA protein to a strand exchange-active conformational state. The mechanistic deficiency of ITP and GTP appears to arise as a consequence of the hydrolysis of these nucleotides to the corresponding nucleoside diphosphates, IDP and GDP. We speculate the nucleoside triphosphates with S0.5 values greater than 100 microM will be intrinsically unable to sustain the strand exchange-active conformational state of the recA protein during ongoing NTP hydrolysis and will therefore be inactive as cofactors for the strand exchange reaction.  相似文献   

8.
The aim of this work was to evaluate the influence of chronic exposure to lead ions on the parameters of energetic status of human erythrocytes in vitro. Umbilical cord erythrocytes were incubated with lead acetate at final lead ion concentrations ranging from 10 to 200 microg/dl. ATP, ADP, AMP, adenosine, GTP, GDP, GMP, guanosine, IMP, inosine, hypoxanthine, NAD and NADP concentrations in erythrocytes were determined using HPLC. Scanning electron micrographs of erythrocytes were taken. The mean concentrations of ATP, GTP, NAD and NADP, and mean values of adenylate energy charge (AEC) and GEC in cells incubated at the presence of lead ions were significantly lower after 20 h of incubation. Concentrations of purine degradation products (Ado, Guo, Ino) and Hyp were significantly higher. It is suggested that lead ions affect the energy metabolism of erythrocytes. Morphological changes in erythrocytes correspond to the increase of lead ions in the incubation mixture and to the decrease of ATP concentration in erythrocytes. A decrease in NAD and ATP concentration in erythrocytes could be a sensitive indicator of energy process disturbance, useful in monitoring in case of chronic lead exposure.  相似文献   

9.
K L Menge  F R Bryant 《Biochemistry》1992,31(22):5158-5165
We have examined the effects of the structurally related nucleoside triphosphates, adenosine triphosphate (ATP), purine riboside triphosphate (PTP), inosine triphosphate (ITP), and guanosine triphosphate (GTP), on the recA protein-promoted DNA renaturation reaction (phi X DNA). In the absence of nucleotide cofactor, the recA protein first converts the complementary single strands into unit-length duplex DNA and other relatively small paired DNA species; these initial products are then slowly converted into more complex multipaired network DNA products. ATP and PTP stimulate the conversion of initial product DNA into network DNA, whereas ITP and GTP completely suppress network DNA formation. The formation of network DNA is also inhibited by all four of the corresponding nucleoside diphosphates, ADP, PDP, IDP, and GDP. Those nucleotides which stimulate the formation of network DNA are found to enhance the formation of large recA-ssDNA aggregates, whereas those which inhibit network DNA formation cause the dissociation of these nucleoprotein aggregates. These results not only implicate the nucleoprotein aggregates as intermediates in the formation of network DNA, but also establish the functional equivalency of ITP and GTP with the nucleoside diphosphates. Additional experiments indicate that the net effect of ITP and GTP on the DNA renaturation reaction is dominated by the corresponding nucleoside diphosphates, IDP and GDP, that are generated by the NTP hydrolysis activity of the recA protein.  相似文献   

10.
Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+’s cytosolic role in the regulation of morphofunctional characteristics of macrophages.  相似文献   

11.
Two distinct glutamate dehydrogenases are present in amoebae of the cellular slime mold Dictyostelium discoideum. One enzyme has been extracted from a crude mitochondrial fraction, and the other from an extramitochondrial cytoplasmic fraction. Both enzymes have been partially purified and characterized. The mitochondrial enzyme can utilize both NAD+ and NADP+ as coenzyme, while the extramitochondrial is NAD+ specific. When the mitondrial enzyme is assayed in the presence of either a rate-limiting or saturating concentration of glutamate, its activity is stimulated by both AMP and ADP and is inhibited by ATP. When the extramitochondrial enzyme is assayed in the presence of a rate-limiting concentration of glutamate, its activity is sensitive to modulation by a number of intermediates in carbohydrate metabolism and is inhibited by ADP, ATP, GTP, and CTP.  相似文献   

12.
A capillary electrophoretic procedure for the separation of eleven nucleotides, 5′-mono-, di- and triphosphates of adenosine, guanosine, cytidine and uridine, has been developed. All eleven analytes can be separated in a fused-silica capillary (63 cm to the detector, I.D. 75 μm) at 20 kV in a 0.02 mol l−1 phosphate-borate buffer (pH 8.0–9.0) with a separation factor ⩾1. The values of the Offord parameter calculated for individual nucleotides predict that monophosphates will migrate faster than triphosphates, and in turn triphosphates will precede diphosphates. By analogy, faster electroosmotic mobility (lower electromigration) of purine nucleotides (AP, GP) can be explained by a more voluminous structure of purine derivatives (two aromatic rings as compared to pyrimidines). Generally speaking, all compounds separated follow the Offord equation assuming that the triphosphate derivatives are ionized to the third degree forming HL3− anions. This assumption is in agreement with the current knowledge about protolytic equilibria of polyphosphates. The only exception to this rule is faster migration of guanosine-5′-triphosphate (GTP) preceding uridine-5′-monophosphate (UMP) which is ascribed in part to the larger molecule of GTP and the two additional OH-groups bound to the pyrimidine ring of UMP.  相似文献   

13.
Here, we report that the smooth muscle and endothelium of the pig coronary artery differ in the profiles of energy metabolism nucleotides. ATP levels in the freshly isolated smooth muscle (1490 ± 93, all the values are in pmol/mg protein) were significantly greater than in the endothelium (418 ± 68). In contrast, endothelium contained higher levels of NADH (328 ± 21), NAD+ (1210 ± 28), NADPH (87 ± 2), and NADP+ (77 ± 4) than smooth muscle (17 ± 2, 96 ±14, 7 ± 1, and 8 ± 1, respectively). However, smooth muscle and endothelium do not differ from each other in the ratios of NADH/NAD+ or NADPH/NADP+. Cells cultured from smooth muscle and endothelium contained less ATP (93 ± 2, 141 ± 6) and had lower ratios of NADH/NAD+ than the freshly isolated tissues but the NADPH/NADP+ ratios remained similar. We conclude that (a) freshly isolated smooth muscle and endothelium differ in their profiles of the energy metabolism nucleotides, and (b) culturing the cells alters the profile.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+ l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity.  相似文献   

15.
Activity of purified protocollagen proline hydroxylase was enhanced several fold by addition of nucleoside triphosphates (3 mM) to the assay medium, but nucleoside mono-and diphosphates were almost inactive. Pyrimidine nucleotides were less effective compared with purine nucleotides, among which GTP was the most effective. dATP and ATP analogues such as adenosine 5′-(β,γ-imino) triphosphate (AMP-PNP), adenosine 5′-(β,γ-methylene) triphosphate (AMP-PCP), etc. were inactive. ATP or GTP showed no additive effect on enzyme activity stimulated by dithiothreitol or bovine serum albumin.  相似文献   

16.
Brains of paralysed rats with insulin-induced hypoglycemia were frozen in situ after spontaneous EEG activity had been absent for 5 or 15 min (“coma”). Recovery (30 min) was achieved in a different group of rats by administering glucose after a 30-min coma period. Purine and pyrimidine nucleotides, nucleosides and free bases were determined in the cortical extracts by high pressure liquid chromatography (HPLC). The ATP values obtained with the HPLC method were in excellent agreement with those obtained using standard enzymatic/fluorometric techniques, while values for ADP and AMP obtained with the HPLC method were significantly lower. Comatose animals showed a severe (40-80%) reduction in the concentrations of all nucleoside triphosphates (ATP. GTP, UTP and CTP) and a simultaneous increase in the concentrations of all nucleoside di- and monophosphates, including that of IMP. The adenine nucleotide pool size decreased to 50% of control level. The concentrations of the nucleosides adenosine, inosine, and uridine increased 50- to 250-fold, while the concentrations of the purine bases, xanthine and hypoxanthine, rose 2- and 30-fold, respectively. There were no increases in the concentrations of adenine, guanine, or xanthosine. Following glucose administration there was a partial (ATP, UTP and CTP) or almost complete (GTP) recovery of the nucleoside triphosphate levels. During recovery, the levels of nucleosidc di- and monophosphates and of adenosine decreased to values close to control; the rise in the inosine level was only partially reversed, and the concentrations of hypoxanthine and xanthine rose further. The adenine nucleotide pool size was only partially restored (to 67% of control value). The adenine nucleotide pool size was not increased by i.p. injection of adenosine or adenine under control condition, or during the posthypoglycemic recovery period.  相似文献   

17.
Paracoccus denitrificans contains both NAD+- and NADP+-linked malic enzyme activities when grown on malate/nitrate. The enzyme is inactive in the absence of NH4+. AcetylCoA inhibits both activities competitively with respect to L-malate. Glyoxylate (0.5 mM) causes 60% inhibition of the NADP+-linked activity but has little effect on the NAD+-linked activity. Citrate, aspartate, AMP, ADP, and ATP, at 0.5mM, have little effect on either of the two activities. The results are discussed with regards to the control of malic enzyme activity within the cell.  相似文献   

18.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

19.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

20.
Abstract: The effects of 17 nucleotides and nucleotide analogs and 11 other compounds on the glutamate-promoted inactivation of brain glutamate decarboxylase were examined. Among the nucleotides, the major determinant of potency was the polyphosphate chain, Glutamate-promoted inactivation was strongly enhanced by low concentrations (<100 μM) of adenosine tetraphosphate and all eight nucleoside triphosphates tested. Nucleoside diphosphates enhanced inactivation, but were much less effective than the nucleoside triphosphates; nucleoside monophosphates were not effective. Modification of the polyphosphate chain of the nucleoside triphosphates also affected potency; adenylylimidodiphosphate and α,β-methylene ATP were about as effective as nucleoside diphosphates, but α,β-methylene ATP was nearly as effective as ATP. The nucleoside base had only a small effect on potency; purine nucleotides were more potent than pyrimidine nucleotides, and one nucleotide with a tricyclic base, 1, N6-etheno ATP, was as effective as the purine nucleoside triphosphates. The 2'-hydroxyl group of ribose was unimportant, since deoxy ATP was as effective as ATP. Three nonnucleotide polyanions were strong promoters of inactivation; inositol hexasulfate and 5-phosphorylribose 1-pyrophosphate were at least as effective as ATP; inositol hexaphosphate (phytate) was as effective as the nucleoside diphosphates. These results suggest that a major determinant of potency was a strong negative charge on the molecule. Negative charge was not sufficient, however, since fructose 1,6-bisphosphate did not promote inactivation. Inactivation by all of these compounds was slow, requiring more than 20 min for full effect. Two competitive inhibitors, chloride and glutarate, acted immediately and also reduced rather than enhanced glutamate-promoted inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号