首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostaglandin 9-ketoreductase (PG-9-KR) was purified from pig kidney to homogeneity, as judged by SDS/PAGE using an improved procedure. The enzyme is pro-S stereoselective with regard to hydrogen transfer from NADPH with prostaglandin E2 as substrate and reduces its 9-keto group with approximately 90% stereoselectivity to form prostaglandin F2 alpha. Approximately 8% of the prostaglandin F formed has the beta-configuration. In addition to catalyzing the interconversion of prostaglandin E2 to F2 alpha, PG-9-KR also oxidizes prostaglandin E2, F2 alpha and D2 to their corresponding, biologically inactive, 15-keto metabolites. Incubation of PG-9-KR with prostaglandin F2 alpha and NAD+ leads to the preferential formation of 15-keto prostaglandin F2 alpha rather than prostaglandin E2. This suggests that the prostaglandin E2/prostaglandin F2 alpha ratio is not determined by the NADP+/NADPH redox couple. The enzyme also reduces various other carbonyl compounds (e.g. 9,10-phenanthrenequinone) with high efficiency. The catalytic properties measured for PG-9-KR suggest that its in vivo function is unlikely to be to catalyze formation of prostaglandin F2 alpha. The monomeric enzyme has a molecular mass of 32 kDa and exists as four isoforms, as judged by isoelectric focusing. PG-9-KR contains 1.9 mol Zn2+/mol enzyme and no other cofactors. Human kidney PG-9-KR was also purified to homogeneity. The human enzyme has a molecular mass of 34 kDa and also exists as four isoforms. Polyclonal antibodies raised against pig kidney PG-9-KR cross-react with human kidney PG-9-KR and also with human brain carbonyl reductase, as demonstrated by Western blot analysis. Sequence data of tryptic peptides from pig kidney PG-9-KR show greater than 90% identity with human placenta carbonyl reductase. From comparison of several properties (catalytical, structural and immunological properties), it is concluded that PG-9-KR and carbonyl reductase are identical enzymes.  相似文献   

2.
Prostaglandin E 9-ketoreductase was purified from chicken heart by ammonium sulfate fractionation, and DEAE-Sephadex, hydroxylapatite and phosphocellulose chromatography. Two peaks of activity were resolved during the phosphocellulose chromatographic step. Both peaks were stimulated by a substance that was not bound to the phosphocellulose column. This stimulatory substance was destroyed by treatment with phosphodiesterase and 0.1 M NaOH. It was heat-stable (100 degrees, 2 min), nondialyzable, and resistant to treatment with pronase, ribonuclease, and deoxyribonuclease; but it was dialyzable after heating or digestion with pronase. Sodium pyrophosphate also enhanced the activities of the prostaglandin E 9-ketoreductases as did angiotensin I; but not angiotensin II. In the presence of 3':5'-cyclic AMP, AMP, or several other ribonucleotides, the enhancing effects of the natural stimulatory substance, sodium pyrophosphate or angiotensin I were blocked, but these ribonucleotides themselves had little effect on the enzymes activity. The substrate specificities of the two prostaglandin E 9-ketoreductases were also studied. Both the 9-keto group and the 15-keto group of 15-ketoprostaglandin F2 alpha could be converted to the corresponding hydroxyl group; the 15-keto group was reduced faster than the 9-keto group. Prostaglandin D2, a prostaglandin with a 9-hydroxyl and an 11-keto group, could not be converted to prostaglandin F2 alpha nor could cyclohexanone be converted to cyclohexanol by the prostaglandin E 9-ketoreductase.  相似文献   

3.
Prostaglandin-E2 9-ketoreductase from human uterine decidua vera   总被引:1,自引:0,他引:1  
Prostaglandin-E2 9-ketoreductase, the enzyme which catalyzes the reaction from prostaglandin E2 (PGE2) to prostaglandin F2 alpha (PGF2 alpha), has been purified 232-fold from human uterine decidua vera. The molecular mass of the enzyme, as estimated by fast protein liquid chromatography, was 29 kDa. Sodium dodecyl sulfate disc gel electrophoresis of the denatured enzyme revealed a molecular mass of 31 kDa. These data suggest that the enzyme consists of a single polypeptide chain. The rate equation of the enzyme reaction for two substrates was used for the determination of five kinetic constants. The equilibrium constant with respect to PGE2 was 83 microM, the Michaelis constant, Km, for PGE2 was 93 microM. For NADPH, the equilibrium constant was 1.0 microM and Km was 1.6 microM. The maximal velocity for the forward reaction was V1 = 217 pmol/min. The inhibition constants for the analgesic agents indomethacin and fentiazac were Ki = 850 microM and Ki = 450 microM and for the steroid progesterone Ki = 1.5 mM, respectively. Prostaglandin-E2 9-ketoreductase might be responsible for the control of the PGE2/PGF2 alpha ratio in human decidua vera. The enzyme, therefore, might be an important factor in the cascade of events leading to uterine contractions and parturition.  相似文献   

4.
1. Prostaglandin E2-9-ketoreductase activity was demonstrated in bovine thyroid homogenates. 2. The enzyme requires reduced pyridine nucleotide and dialysis prior to assay for optimal activity. 3. The products of the reaction, NADP and prostaglandin F2alpha, inhibit enzyme activity. 4. Sigmoidal kinetics are observed when substrate concentration is plotted against enzyme velocity, indicative of an allosteric enzyme. 5. Thyrotropin increases enzyme activity in bovine thyroid slices. This increase is both hormone- and tissue-specific.  相似文献   

5.
Prostaglandin-E2 9-ketoreductase (PGE2-9-KR, EC 1.1.1.189), the enzyme which catalyzes the reaction from prostaglandin E2 (PGE2) to prostaglandin F2 alpha (PGF2 alpha), was purified 580-fold from swine kidney. The molecular mass of the enzyme determined by SDS-gel electrophoresis was 33 kDa. Antiserum against the purified enzyme was raised in three rabbits. The antiserum was able to precipitate PGE2-9-KR from swine kidney and to crossreact with pGE2-9-KR from several reproductive organ tissues, such as rabbit ovary, rabbit corpus luteum, rabbit endometrium and human decidua vera. When swine kidney PGE2-9-KR was labelled with 125I and incubated with affinity-purified antiserum in the presence of increasing amounts of unlabelled enzyme, competitive binding of the unlabelled enzyme to the antibody was observed. A radioimmunoassay for the quantitation of the enzyme was developed. The standard curve was linear from 5 to 500 ng enzyme. The intra- and interassay coefficients of variation were 6.4 and 13.2%, respectively. The assay may be useful for the quantitation of PGE2-9-KR in several tissues under various physiological conditions.  相似文献   

6.
Rabbit kidney prostaglandin 9-ketoreductase was found to metabolize the glutathione conjugate of prostaglandin A1 (GSH-prostaglandin A1). Apparent Km (GSH-prostaglandin A1) 13 microM and apparent Km (prostaglandin E1) 200 microM. The cytosolic preparation was subjected to gelfiltration and isoelectric focusing, which revealed that metabolism of prostaglandin E1 and GSH-prostaglandin A1 occurs by means of the same fractions. Furthermore, prostaglandin E1 and GSH-prostaglandin A1 are competitive inhibitors of the enzyme, when GSH-prostaglandin A1 and prostaglandin E1 are tested as substrates, respectively. It si concluded, that GSH-prostaglandin A1 is a much better substrate for prostaglandin 9-ketoreductase from rabbit kidney than is prostaglandin E1.  相似文献   

7.
Human erythrocytes were found to contain two prostaglandin metabolizing enzymes: a prostaglandin E 9-ketoreductase catalyzing the reduction of prostaglandin E2 to form prostaglandin F and a 15-hydroxyprostaglandin dehydrogenase that catalyzes the oxidation of prostaglandin F to form 15-ketoprostaglandin F. Both enzymes are found in the cytoplasmic fraction of erythrocytes and both enzymes use the triphosphopyridine nucleotides as cofactors more effectively than the diphosphopyridine nucleotides. These two enzymes were partially purified from erythrocyte homogenates and some of their properties were studied.  相似文献   

8.
We have previously demonstrated that decreased cortical prostaglandin metabolism can contribute significantly to an increase in renal tissue levels and activity of prostaglandin E2 in bilateral ureteral obstruction, a model of acute renal failure. In the present study, we have further investigated whether alterations in prostaglandin metabolism can occur in a nephrotoxic model of acute renal failure. Prostaglandin synthesis, prostaglandin E2 metabolism (measured as both prostaglandin E2-9-ketoreductase and prostaglandin E2-15-hydroxydehydrogenase activity), and tissue concentration of prostaglandin E2 were determined in rabbit kidneys following an intravenous administration of uranyl nitrate (5 mg/kg). No changes in the rates of cortical microsomal prostaglandin E2 and prostaglandin F2 alpha synthesis were noted at the end of 1 and 3 days, while medullary synthesis of prostaglandin E2 fell by 47% after 1 day and 43% after 3 days. Cortical cytosolic prostaglandin E2-9-ketoreductase activity was found to be decreased by 36% and 76% after 1 and 3 days respectively. No significant changes were noted in cortical cytosolic prostaglandin E2-15-hydroxydehydrogenase activity after 3 days. Cortical tissue levels of prostaglandin E2 increased by 500% at the end of 3 days. These data demonstrate that in nephrotoxic acute renal failure, decreased prostaglandin metabolism (i.e., prostaglandin E2-9-ketoreductase activity) can result in increased tissue levels of prostaglandin E2 in the absence of increased prostaglandin synthesis and suggest that alterations in prostaglandin metabolism may be an important regulator of prostaglandin activity in acute renal failure.  相似文献   

9.
Prostaglandin D2 11-ketoreductase activity of bovine liver was purified 340-fold to apparent homogeneity. The purified enzyme was a monomeric protein with a molecular weight of about 36 kDa, and had a broad substrate specificity for porstaglandins D1, D2, D3, and H2, and various carbonyl compounds (e.g., phenanthrenequinone and nitrobenzaldehyde, etc.). Prostaglandin D2 was reduced to 9 alpha,11 beta-prostaglandin F2 and prostaglandin H2 to prostaglandin F2 alpha with NADPH as a cofactor. Phenanthrenequinone competitively inhibited the reduction of prostaglandin D2, while it did not inhibit that of prostaglandin H2. Moreover, chloride ion stimulated the reduction of prostaglandin D2 and carbonyl compounds, while it had no effect on that of prostaglandin H2. Besides, the enzyme was inhibited by flavonoids (e.g., quercetin) that inhibit carbonyl reductase, but was not inhibited by barbital and sorbinil, which are the inhibitors of aldehyde and aldose reductases, respectively. These results indicate that the bovine liver enzyme has two different active sites, i.e., one for prostaglandin D2 and carbonyl compounds and the other for prostaglandin H2, and appears to be a kind of carbonyl reductase like bovine lung prostaglandin F synthase (Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O., 1985, J. Biol. Chem. 260, 7035-7041). However, the bovine liver enzyme was different from prostaglandin F synthase of bovine lung with regard to the Km value for prostaglandin D2 (10 microM for the liver enzyme and 120 microM for the lung enzyme), the sensitivity to chloride ion (threefold greater activation for the liver enzyme) and the inhibition by CuSO4 and HgCl2 (two orders of magnitude more resistant in the case of the liver enzyme). These results suggest that the bovine liver enzyme is a subtype of bovine lung prostaglandin F synthase.  相似文献   

10.
Abstract: The presence of prostaglandins D2, E2, and F was demonstrated and their contents measured in various regions of postmortem human brain, pineal body, and pituitary by using specific radioimmunoassays and gas chromatography-mass spectrometry. The three prostaglandins were widely distributed in similar concentrations ranging from several hundred pg/g wet weight to about 40 ng/g wet weight. Prostaglandins D2 and E2 showed consistent and similar regional distributions in all six brains tested; amounts were high in pineal body, pituitary, olfactory bulb, and hypothalamus. On the other hand, prostaglandin F was distributed more evenly. Prosta- glandin D synthetase and prostaglandin E synthetase activities were found in cerebrum homogenate from a single subject and were recovered from the 100,000 × g supernatant. The presence of 1 m M glutathione, reduced form, markedly stimulated the activity of prostaglandin E synthetase, but did not affect prostaglandin D synthetase activity. Activity of 15-hydroxyprostaglandin dehydrogenase was found in the cerebrum homogenate and was partially purified. This enzyme required NADP as a cofactor and copurified with prostaglandin E 9-ketoreductase.  相似文献   

11.
The effects of bradykin on prostaglandin metabolism in canine mesenteric vessels were examined. Bradykinin stimulated microsomal prostaglandin synthesis in both artery and vein; this stimulation was more pronounced when [14C] hosphatidylcholine rather than [14C] arachidonate was used as the substrate for prostaglandin synthetase. This suggested that bradykinin enhanced a membrane phospholipase. In addition, bradykinin selectively stimulated prostaglandin E 9-ketoreductase activity from veins but not arteries. This may explain the finding that bradykinin induces the release of prostaglandin E compounds from arteries but prostaglandin F compounds from veins.  相似文献   

12.
The effects of bradykin on prostaglandin metabolism in canine mesenteric vessels were examined. Bradykinin stimulated microsomal prostaglandin synthesis in both artery and vein; this stimulation was more pronounced when [14C]phosphatidylcholine rather than [14C]arachidonate was used as the substrate for prostaglandin synthetase. This suggested that bradykinin enhanced a membrane phospholipase. In addition, bradykinin selectively stimulated prostaglandin E 9-ketoreductase activity from veins but not arteries. This may explain the finding that bradykinin induces the release of prostaglandin E compounds from arteries but prostaglandin F compounds from veins.  相似文献   

13.
We examined the effects of three saturated fatty acids (myristic acid 14:0, palmitic acid 16:0, and stearic acid 18:0) on prostaglandin E 9-ketoreductase (PGE-9-KR, EC 1.1.1.189), which catalyzes the conversion of prostaglandin E2 (PGE2) into prostaglandin F2 alpha (PGF2 alpha). Palmitic acid inhibited PGE-9-KR activity dose-dependently, whereas the other two fatty acids had no effect. In spite of the structural similarity of these fatty acids, our findings suggest that, of the three, only palmitic acid has an inhibitory effect on PGE-9-KR.  相似文献   

14.
A sensitive heterologous enzyme immunoassay for prostaglandin E2 was developed using 9-deoxy-9-methylene-prostaglandin F2 alpha as a stable prostaglandin E2 mimic. beta-Galactosidase was conjugated to the hapten mimic. Anti-prostaglandin E2 IgG was bound to a polystyrene tube. The enzyme-labeled hapten mimic mixed with unlabeled prostaglandin E2 was allowed to react in a competitive manner with the immobilized antibody. Then, the beta-galactosidase specifically bound to the antibody was assayed fluorometrically, and the enzyme activity was correlated with the amount of unlabeled prostaglandin E2. According to the calibration curve thus obtained, prostaglandin E2 could be determined in a range of 1.2-430 fmol. Prostaglandin E2 was extracted from human urine by the use of an octadecylsilyl silica column. The crude extract contained a substance(s) which disturbed the enzyme immunoassay and gave an apparently high content of prostaglandin E2. The interfering substance was separated from prostaglandin E2 by reverse-phase high-performance liquid chromatography. The purified urinary extract was examined by the enzyme immunoassay for prostaglandin E2, and the validity of the results was confirmed by gas chromatography-selected ion monitoring.  相似文献   

15.
An NADP-linked 15-hydroxyprostaglandin dehydrogenase has been identified in human placental tissue and partially purified. Prostaglandins of the A and B series are good substrates for this enzyme while those of the E and F series are not. This enzymic preparation also catalyzes oxido-reductions at the 9 position of the prostaglandin molecule; these are slow compared to those occurring at the 15 position of the prostaglandins in the A and B series. Disc gel electrophoresis of the purified enzyme reveals the presence of three protein bands which contain dehydrogenase activity. Boiled placental homogenates contain an inhibitor which appears to be specific for the NADP-linked 15-hydroxyprostaglandin dehydrogenase. The inhibitor is heat stable and has a molecular weight of 6,000 – 7,000.  相似文献   

16.
Generation of a prostaglandin of the F series by bovine mesenteric veins in response to bradykinin may depend on increased synthesis of PGE and conversion of the latter to PGF after activation of PGE 9-ketoreductase by the kinin. The prostaglandin then mediates the constrictor action of bradykinin on the bovine mesenteric vein. A high speed supernatant (HSS) fraction of bovine mesenteric blood vessels contains the highest activity of PGE 9-ketoreductase. Incubation of PGE2 with HSS at 37°C in the presence of a NADPH generating system resulted in time-dependent conversion of PGE2 to PGF. Bradykinin (0.01mM) more than doubled conversion of PGE2 to PGF by the PGE 9-ketoreductase obtained from mesenteric veins whereas the kinin had little effect on enzymic activity of the HSS fraction of mesenteric arteries. However, after inhibition of kininase catabolism, bradykinin increased PGE 9-ketoreductase activity of arteries and veins to the same degree.Prostaglandin release from veins by bradykinin appears essential to contraction of mesenteric venous strips evoked by the polypeptide as indomethacin treatment abolished this effect. PGE 9-ketoreductase may be an important prostaglandin regulatory mechanism of the vascular wall whereby the functional consequences of changes in rates of prostaglandin synthesis are governed by determining the ratio of PGE to PGF within vascular tissue. Constriction of bovine mesenteric veins evoked by bradykinin may, therefore, depend on increased prostaglandin synthesis and conversion of newly formed PGE to PGF, both steps being affected by the kinin.  相似文献   

17.
L M Cagen  P G Baer 《Life sciences》1987,40(1):95-100
The effect of gonadectomy and treatment with sex-steroids on renal prostaglandin 9-ketoreductase activity in 10-11 week old male and female rats was determined. Rats were gonadectomized or subjected to sham operation at 3 weeks of age. During week 7, rats were injected s.c. twice over a 6-day interval with vehicle (peanut oil, 0.5 ml X kg-1) or with depot forms of testosterone (5 mg X kg-1), estradiol (0.02 mg X kg-1), progesterone (5 mg X kg-1), or estradiol and progesterone combined. Renal prostaglandin 9-ketoreductase activity was about 50% higher in female rats than in males. Gonadectomy decreased 9-ketoreductase activity in females, but not in males, and eliminated the gender difference in enzyme activity. Treatment with estradiol elevated 9-ketoreductase activity in males and females, while treatment with testosterone or progesterone was without effect. Progesterone did, however, antagonize the elevation in 9-ketoreductase activity produced by estradiol.  相似文献   

18.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

19.
Using the cDNA of bovine lung prostaglandin F synthase (EC 1.1.1.2) as a probe, we isolated a clone from a bovine liver cDNA library which differed in only eleven nucleotides from the probe. The corresponding protein contained three amino acid substitutions, including a leucine residue which is conserved throughout all aldo-keto reductases. We inserted the liver cDNA into expression vector pUC19 and expressed the recombinant liver enzyme in E.coli. The purified liver enzyme reduced prostaglandin H2 as well as prostaglandin D2 and various carbonyl compounds. The high relative activity against prostaglandin H2 in combination with a high Km value for prostaglandin D2 identified this liver enzyme as a lung type prostaglandin F synthase. However, the binding constant for NADPH of the liver enzyme was 3.5 fold higher than that of lung prostaglandin F synthase.  相似文献   

20.
The existence of the enzyme prostaglandin E-2-9-ketoreductase which can convert prostaglandin E-2 to prostaglandin F-2 alpha was indicated in experiments with pig and human ovarian tissues in vitro, using radioimmunoassay methods and a superfusion technique. Further studies involving radiotracer techniques demonstrated that the enzyme was localized in the high-speed (105 000 g) supernatant fraction of human, pig and rat luteal tissue and human stromal tissue. The enzyme was shown to be NADPH-dependent and its activity in luteal tissue increased in the order : pig less than human less than rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号