首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of He-O2-breathing (79.1%:20.9%) compared to air-breathing on inspiratory ventilation (VI) and its different components [tidal volume (VT), the duration of the phases of each respiratory cycle (tI, tTOT)] as well as on inspiratory mouth occlusion pressure (P0.1) were studied in six normal men at rest and during 72 constant-load exercises (90 W) over a much longer period than in previous studies. Results showed that, irrespective of the order of administration of the two gases (7 min air----7 min He-O2 or vice versa): at rest, P0.1 decreased during He-O2 inhalation but no changes in VI and breathing pattern were detectable; during exercise, sustained He-induced hyperventilation was observed without any change in the absolute value of P0.1; increase in P0.1 between the resting period and exercise (delta P0.1) was significantly higher during He-O2-breathing than during air breathing; this He-induced hyperventilation was associated with a sustained increase in VT/tI, but with constant tI/tTOT. Helium-breathing during exercise cannot be a simple situation of resistance unloading, as has been suggested. We conclude that He-O2-breathing, after the initial compensation period, induces reflex changes in ventilatory control with an increase in inspiratory neural drive. Moreover, it appears that exercise P0.1 is not a legitimate index of inspiratory neural drive whenever rest P0.1 changes according to the nature of the inhaled gas mixture.  相似文献   

2.
  • 1.1. The effects of exercise in birds on changes in body temperature, ventilation, blood gases and air-sac gases are reviewed.
  • 2.2. Except in the case of isothermic exercise below the anaerobic threshold, birds hyperventilate during exercise. Exercise hyperventilation is greater at higher exercise intensities and at higher environmental temperatures.
  • 3.3. The domestic fowl appears to be a suitable model for the study of physiological responses to exercise in running birds. A prior period of training is necessary to accustom the birds to laboratory procedures.
  • 4.4. The possible neural and/or humoral mechanisms controlling exercise hyperpnea are listed. Intrapulmonary hypocapnia seems to exclude the possibility that lung chemoreceptors are responsible for the hyperpnea during exercise, but these receptors probably play a predominant role in the determination of ventilatory pattern.
  相似文献   

3.
Cardiac output and stroke volume in exercising ducks and pigeons   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
The purpose of these experiments was to examine the temporal pattern of arterial carbon dioxide tension (PaCO2) to assess the relationship between alveolar ventilation (VA) and CO2 return to the lung at the onset and offset of submaximal treadmill exercise. Five healthy ponies exercised for 8 min at two work rates: 50 m/min 6% grade and 70 m/min 12% grade. PaCO2 decreased (P less than 0.05) below resting values within 1 min after commencement of exercise at both work rates and reached a nadir at 90 s. PaCO2 decreased maximally by 2.5 and 3.5 Torr at the low and moderate rate, respectively. After the nadir, PaCO2 increased across time during both work rates and reached values that were not significantly different (P greater than 0.05) from rest at minute 4 of exercise. Partial pressure of O2 in arterial blood and arterial pH reflected hyperventilation during the first 3 min of exercise. At the termination of exercise PaCO2 increased (1.5 Torr) above rest (P less than 0.05), reaching a zenith at 2-3 min of recovery. These data suggest that VA and CO2 flow to the lung are not tightly matched at the onset and offset of exercise in the pony and thus challenges the traditional concept of blood gas homeostasis during muscular exercise.  相似文献   

6.
7.
To examine the role of cardiopulmonary receptors in arterial blood pressure regulation during and after exercise, conscious dogs with chronic sinoaortic denervation were subjected to 12 min of light exercise and 12 min of exercise that increased in severity every 3 min. Hemodynamic measurements were made before and after interruption of cardiopulmonary afferents by bilateral cervical vagotomy. During both exercise protocols, after an initial transient decrease, the arterial blood pressure remained close to resting values before and after vagotomy. On cessation of the graded exercise, the arterial blood pressure did not change before, but a rapid and sustained increase in pressure occurred after vagotomy. At the time of this increase the cardiac output and heart rate were returning rapidly to the resting level. The study demonstrates that in the chronic absence of arterial baroreflexes, vagal afferents prevent a rise in arterial blood pressure after vigorous exercise presumably by the action of cardiopulmonary receptors causing a rapid dilatation of systemic resistance vessels.  相似文献   

8.
9.
10.
11.
12.
The influence of chronic obstructive pulmonary disease (COPD) on exercise ventilatory and gas exchange kinetics was assessed in nine patients with stable airway obstruction (forced expired volume at 1 s = 1.1 +/- 0.33 liters) and compared with that in six normal men. Minute ventilation (VE), CO2 output (VCO2), and O2 uptake (VO2) were determined breath-by-breath at rest and after the onset of constant-load subanaerobic threshold exercise. The initial increase in VE, VCO2, and VO2 from rest (phase I), the subsequent slow exponential rise (phase II), and the steady-state (phase III) responses were analyzed. The COPD group had a significantly smaller phase I increase in VE (3.4 +/- 0.89 vs. 6.8 +/- 1.05 liters/min), VCO2 (0.10 +/- 0.03 vs. 0.22 +/- 0.03 liters/min), VO2 (0.10 +/- 0.03 vs. 0.24 +/- 0.04 liters/min), heart rate (HR) (6 +/- 0.9 vs. 16 +/- 1.4 beats/min), and O2 pulse (0.93 +/- 0.21 vs. 2.2 +/- 0.45 ml/beat) than the controls. Phase I increase in VE was significantly correlated with phase I increase in VO2 (r = 0.88) and HR (r = 0.78) in the COPD group. Most patients also had markedly slower phase II kinetics, i.e., longer time constants (tau) for VE (87 +/- 7 vs. 65 +/- 2 s), VCO2 (79 +/- 6 vs. 63 +/- 3 s), and VO2 (56 +/- 5 vs. 39 +/- 2 s) and longer half times for HR (68 +/- 9 vs. 32 +/- 2 s) and O2 pulse (42 +/- 3 vs. 31 +/- 2 s) compared with controls. However, tau VO2/tau VE and tau VCO2/tau VE were similar in both groups. The significant correlations of the phase I VE increase with HR and VO2 are consistent with the concept that the immediate exercise hyperpnea has a cardiodynamic basis. The slow ventilatory kinetics during phase II in the COPD group appeared to be more closely related to a slowed cardiovascular response rather than to any index of respiratory function. O2 breathing did not affect the phase I increase in VE but did slow phase II kinetics in most subjects. This confirms that the role attributed to the carotid bodies in ventilatory control during exercise in normal subjects also operates in patients with COPD.  相似文献   

13.
14.
Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Forearm blood flow (FBF; in ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from FBF and blood pressure (in mmHg; brachial arterial catheter). Studies were performed in a hyperbaric chamber with the subjects supine at 1 atmospheres absolute (ATA) (sea level) while breathing normoxic gas [21% O(2), 1 ATA; inspired Po(2) (Pi(O(2))) ≈ 150 mmHg] and at 2.82 ATA while breathing hyperbaric normoxic (7.4% O(2), 2.82 ATA, Pi(O(2)) ≈ 150 mmHg) and hyperoxic (100% O(2), 2.82 ATA, Pi(O(2)) ≈ 2,100 mmHg) gas. Resting FBF and FVC were less during hyperbaric hyperoxia compared with hyperbaric normoxia (P < 0.05). The change in FBF and FVC (Δ from rest) during exercise under normoxia (204 ± 29 ml/min and 229 ± 37 ml·min(-1)·100 mmHg(-1), respectively) and hyperbaric normoxia (203 ± 28 ml/min and 217 ± 35 ml·min(-1)·100 mmHg(-1), respectively) did not differ (P = 0.66-0.99). However, the ΔFBF (166 ± 21 ml/min) and ΔFVC (163 ± 23 ml·min(-1)·100 mmHg(-1)) during hyperbaric hyperoxia were substantially attenuated compared with other conditions (P < 0.01). Our data suggest that exercise hyperemia in skeletal muscle is highly dependent on oxygen availability during hyperoxia.  相似文献   

15.
In a previous study of normal subjects exercising at sea level and simulated altitude, ventilation-perfusion (VA/Q) inequality and alveolar-end-capillary O2 diffusion limitation (DIFF) were found to increase on exercise at altitude, but at sea level the changes did not reach statistical significance. This paper reports additional measurements of VA/Q inequality and DIFF (at sea level and altitude) and also of pulmonary arterial pressure. This was to examine the hypothesis that VA/Q inequality is related to increased pulmonary arterial pressure. In a hypobaric chamber, eight normal subjects were exposed to barometric pressures of 752, 523, and 429 Torr (sea level, 10,000 ft, and 15,000 ft) in random order. At each altitude, inert and respiratory gas exchange and hemodynamic variables were studied at rest and during several levels of steady-state bicycle exercise. Multiple inert gas data from the previous and current studies were combined (after demonstrating no statistical difference between them) and showed increasing VA/Q inequality with sea level exercise (P = 0.02). Breathing 100% O2 did not reverse this increase. When O2 consumption exceeded about 2.7 1/min, evidence for DIFF at sea level was present (P = 0.01). VA/Q inequality and DIFF increased with exercise at altitude as found previously and was reversed by 100% O2 breathing. Indexes of VA/Q dispersion correlated well with mean pulmonary arterial pressure and also with minute ventilation. This study confirms the development of both VA/Q mismatch and DIFF in normal subjects during heavy exercise at sea level. However, the mechanism of increased VA/Q mismatch on exercise remains unclear due to the correlation with both ventilatory and circulatory variables and will require further study.  相似文献   

16.
In three foxhounds after left pneumonectomy, the relationships of ventilatory work and respiratory muscle (RM) blood flow to ventilation (VE) during steady-state exercise were examined. VE was measured using a specially constructed respiratory mask and a pneumotach; work of breathing was measured by the esophageal balloon technique. Blood flow to RM was measured by the radionuclide-labeled microsphere technique. Lung compliance after pneumonectomy was 55% of that before pneumonectomy; compliance of the thorax was unchanged. O2 uptake (VO2) of RM comprised only 5% of total body VO2 at exercise. At rest, inspiratory muscles received 62% and expiratory muscles 38% of the total O2 delivered to the RM (QO2RM). During exercise, inspiratory muscles received 59% and expiratory muscles 41% of total QO2RM. Blood flow per gram of muscle to the costal diaphragm was significantly higher than that to the crural diaphragm. The diaphragm, parasternals, and posterior cricoarytenoids were the most important inspiratory muscles, and internal intercostals and external obliques were the most important expiratory muscles for exercise. Up to a VE of 120 l/min through one lung, QO2RM constituted only a small fraction of total body VO2 during exercise and maximal vasodilation in the diaphragm was never approached.  相似文献   

17.
The relative roles of neural and pressure gradient factors, causing a fall or maintenance of bronchial blood flow in exercising sheep, are unknown. These were examined in sheep prepared under thiopentone/isoflurane general anaesthesia with a pulsed Doppler probe mounted on the bronchial artery, and aortic pressure (Pa) catheter in superficial cervical artery. After recovery, Swan-Ganz catheters were inserted under local anaesthesia into the pulmonary artery. Bronchial flow and conductance (Qbr, Cbr), and pressure gradients (Pg; i.e. aortic minus right atrial, Pg_RAP; pulmonary artery, Pg_Ppa; and, left atrial (wedge) Pg_LAP) were derived from continuous records, after switching between downstream sites during and after moderately severe treadmill exercise (3.8 km.h(-1), for 1.7 min, 6 min recovery). The protocol was repeated after combined alpha1,alpha2-adrenoceptor/cholinoceptor blockade using phentolamine methanesulfonate and methscopolamine bromide. Bronchial flow fell in both receptor intact (INT) and (BL) blocked state. Pa rose in INT, but downstream pressures rose only 3.7 (RAP), 2.8 (Ppa) and 2.0 (LAP) mmHg (P for each < 0.05) in both INT and BL. Pg_RAP and Pg_Ppa did not rise, but Pg_LAP rose 4.0 mmHg (P < 0.05). In BL, Pa fell, as did Pg_RAP (7.0 mmHg, P < 0.05), Pg_Ppa (8.9 mmHg, P < 0.001), but Pg_LAP did not change. Thus, downstream pressures change by small amounts, and pressure gradients to RAP and Ppa sites do not change during moderately severe exercise in normal sheep. The fall in Qbr in INT is due to neural factors, but in BL is due to a fall in Pg. The relative rise in Pg_LAP in both INT and BL favours redistribution within total Qbr to the pulmonary capillary/vein/left atrium site.  相似文献   

18.
19.
20.
The mechanism of ventilatory stimulation that accompanies increases in cardiac output is unknown. Previous studies addressing this issue have been inconclusive. However, only steady pulmonary blood flow was used. The effect of flow pulsatility merits consideration, because increasing cardiac output raises not only mean pulmonary arterial pressure but also pulse pressure; mechanoreceptors with an important dynamic component to their responses may cause a response to pulsatile, but not steady, flow. Studies were done on anesthetized cats (n = 4) and dogs (n = 4). The right pulmonary artery was cannulated within the pericardium, and systemic blood was pumped from the left atrium to the right pulmonary artery. The right pulmonary circulation was perfused at different levels of flow, which was either steady or pulsatile. Steady-state flow of up to 150 ml.kg-1.min-1 (270 ml.kg-1.min-1 when corrected for the proportion of lung tissue perfused) did not affect breathing pattern. When high pulmonary flow was made pulsatile (pulse pressure approximately 23 mmHg), breath duration decreased from 3.7 +/- 0.72 to 3.4 +/- 0.81 (SD) s (P less than 0.01), representing a change in frequency of only 9%. There was no change in peak inspiratory activity. It was concluded that pulmonary vascular mechanoreceptors are not likely to contribute significantly to the increase in ventilation in association with increases in cardiac output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号