首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete nucleotide sequence of the single-stranded RNA genome of human rhinovirus 14, one of the causative agents of the common cold, has been determined from cDNA cloned in E. coli. The genome is typical of the picornaviridae family, comprising a 5' non-coding region of 624 nucleotides, a long open reading frame of 6537 nucleotides (90.8% of the genome) and a 3' non-coding region of 47 nucleotides. Comparison of the nucleotide sequence and the predicted amino acid sequence with those of the polioviruses reveals a surprising degree of homology which may allow recognition of regions of antigenic importance and prediction of the virus polyprotein cleavage sites. The results presented here imply a closer genetic relationship between the rhinovirus and enterovirus genera than previously suspected.  相似文献   

2.
The crystal structure of human muscle aldolase at 3.0 A resolution   总被引:2,自引:0,他引:2  
The three-dimensional structure of fructose-1,6-bisphosphate aldolase from human muscle has been determined at 3.0 A resolution by X-ray crystallography. The active protein is a tetramer of 4 identical subunits each of which is composed of an eight-stranded alpha/beta-barrel structure. The lysine residue responsible for Schiff base formation with the substrate is located near the centre of the barrel in the middle of the sixth beta-strand. While the overall topology of the alpha/beta-barrel is very similar to those found in several other enzymes, the distribution of charged residues inside the core of the barrel seems distinct. The quaternary fold of human muscle aldolase uses interfacial regions also involved in the subunit association of other alpha/beta-barrel proteins found in glycolysis, but exploits these regions in a manner not seen previously.  相似文献   

3.
Calmodulin structure refined at 1.7 A resolution.   总被引:3,自引:0,他引:3  
We have determined and refined the crystal structure of a recombinant calmodulin at 1.7 A resolution. The structure was determined by molecular replacement, using the 2.2 A published native bovine brain structure as the starting model. The final crystallographic R-factor, using 14,469 reflections in the 10.0 to 1.7 A range with structure factors exceeding 0.5 sigma, is 0.216. Bond lengths and bond angle distances have root-mean-square deviations from ideal values of 0.009 A and 0.032 A, respectively. The final model consists of 1279 non-hydrogen atoms, including four calcium ions, 1130 protein atoms, including three Asp118 side-chain atoms in double conformation, 139 water molecules and one ethanol molecule. The electron densities for residues 1 to 4 and 148 of calmodulin are poorly defined, and not included in our model, except for main-chain atoms of residue 4. The calmodulin structure from our crystals is very similar to the earlier 2.2 A structure described by Babu and coworkers with a root-mean-square deviation of 0.36 A. Calmodulin remains a dumb-bell-shaped molecule, with similar lobes and connected by a central alpha-helix. Each lobe contains three alpha-helices and two Ca2+ binding EF hand loops, with a short antiparallel beta-sheet between adjacent EF hand loops and one non-EF hand loop. There are some differences in the structure of the central helix. The crystal packing is extensively studied, and facile crystal growth along the z-axis of the triclinic crystals is explained. Herein, we describe hydrogen bonding in the various secondary structure elements and hydration of calmodulin.  相似文献   

4.
A collection of 35 mouse monoclonal antibodies, raised against human rhinovirus 14 (HRV-14), was used to isolate 62 neutralization-resistant mutants. When cross-tested against the antibodies in a neutralization assay, the mutants fell into four antigenic groups, here called neutralization immunogens: NIm-IA, -IB, -II, and -III. Sequencing the mutant RNA in segments corresponding to serotype-variable regions revealed that the amino acid substitutions segregated into clusters, which correlated exactly with the immunogenic groups (NIm-IA mutants at VP1 amino acid residue 91 or 95; NIm-II mutants at VP2 residue 158, 159, 161, or 162; NIm-III mutants at VP3 residue 72, 75, or 78; and NIm-IB mutants at two sites, either VP1 residue 83 or 85, or residue 138 or 139). Examination of the three-dimensional structure of the virus (M. G. Rossmann, E. Arnold, J. W. Erickson, E. A. Frankenberger, J. P. Griffith, H.-J. Hecht, J. E. Johnson, G. Kamer, M. Luo, A. G. Mosser, R. R. Rueckert, B. Sherry, and G. Vriend, Nature [London], 317:145-153, 1985) revealed that each of the substitution clusters formed a protrusion from the virus surface, and the side chains of the substituted amino acids pointed outward. Moreover, four of the amino acid substitutions, which initially appeared to be anomalous because they were encoded well outside the cluster groups, could be traced to surface positions immediately adjacent to the appropriate viral protrusions. We conclude that three of the four antigens, NIm-IB, -II, and -III, are discontinuous. Thus, the amino acid substitutions in all 62 mutants fell within the proposed immunogenic sites; there was no evidence for alteration of any antigenic site by a distal mutation.  相似文献   

5.
Structure of an insect virus at 3.0 A resolution   总被引:11,自引:0,他引:11  
We report the first atomic resolution structure of an insect virus determined by single crystal X-ray diffraction. Black beetle virus has a bipartite RNA genome encapsulated in a single particle. The capsid contains 180 protomers arranged on a T = 3 surface lattice. The quaternary organization of the protomers is similar to that observed in the T = 3 plant virus structures. The protomers consist of a basic, crystallographically disordered amino terminus (64 residues), a beta-barrel as seen in other animal and plant virus subunits, an outer protrusion composed predominantly of beta-sheet and formed by three large insertions between strands of the barrel, and a carboxy terminal domain composed of two distorted helices lying inside the shell. The outer surfaces of quasi-threefold related protomers form trigonal pyramidyl protrusions. A cleavage site, located 44 residues from the carboxy terminus, lies within the central cavity of the protein shell. The structural motif observed in BBV (a shell composed of 180 eight-stranded antiparallel beta-barrels) is common to all nonsatellite spherical viruses whose structures have so far been solved. This highly conserved shell architecture suggests a common origin for the coat protein of spherical viruses, while the primitive genome structure of BBV suggests that this insect virus represents an early stage in the evolution of spherical viruses from cellular genes.  相似文献   

6.
F A Saul  R J Poljak 《Proteins》1992,14(3):363-371
The three-dimensional structure of the human immunoglobulin fragment Fab New (IgG1, lambda) has been refined to a crystallographic R-factor of 16.9% to 2 A resolution. Rms deviations of the final model from ideal geometry are 0.014 A for bond distances and 3.03 degrees for bond angles. Refinement was based on a new X-ray data set including 28,301 reflections with F > 2.5 sigma(F) from 6.0 to 2.0 A resolution. The starting model for the refinement procedure reported here is from the Brookhaven Protein Data Bank entry 3FAB (rev. 1981). Differences between the initial and final models include modified polypeptide-chain folding in the third complementarity-determining region (CDR3) and the third framework region (FR3) of VH and in some exposed loops of CL and CH1. Amino acid sequence changes were determined at a number of positions by inspection of difference electron density maps. The incorporation of amino acid sequence changes results in an improved VH framework model for the "humanization" of monoclonal antibodies.  相似文献   

7.
The refined crystal structure of ribonuclease A at 2.0 A resolution   总被引:13,自引:0,他引:13  
This paper describes the structure of bovine pancreatic ribonuclease A, refined by a restrained parameter least squares procedure at 2.0 A resolution, and rebuilt using computer graphics. The final agreement factor (formula see text) is 0.159. The positions of the 951 main chain atoms have been determined with an estimated accuracy of 0.17 A. In addition, the model includes a phosphate group in the active site and 176 waters, many of them with partial occupancy. The bond lengths in the refined structure of RNase A differ from the ideal values by an overall root mean square deviation of 0.022 A; the corresponding value for angle distances is 0.06 A. The root mean square deviation of planar atoms from ideality is 0.017 A, and root mean square deviation of the peptide torsion angles from 180 degrees is 3.4 degrees. The model is in good agreement with the final difference Fourier maps. Two active site histidines, His 12 and His 119, form hydrogen bonds to the phosphate ion. His 119 is also hydrogen bonded to the carboxyl of ASp 121 and His 12 to the carbonyl of Thr 45. The structure of the RNase A is very similar to that of RNase S, particularly in the active site region. The root mean square discrepancy of all atoms from residues 1 to 16 and 24 to 123 is 1.06 A and the root mean square discrepancy for the active site region is 0.6 A.  相似文献   

8.
Virion orientation in cubic crystals of the human common cold virus HRV14   总被引:3,自引:0,他引:3  
A new cubic crystal form (a = 445.1 A) of space group P23 is reported for human rhinovirus R14. There are four particles per unit cell, each situated on a crystallographic 3-fold axis. The orientation of these particles has been determined with a rotation function and their approximate positions have been derived from a Patterson map. The crystals diffract to at least 2.8 A resolution. Limitations to the possible surface features of the virus are set by a comparison of the cubic and orthorhombic crystal forms.  相似文献   

9.
The crystal structure of staphylococcal nuclease refined at 1.7 A resolution   总被引:16,自引:0,他引:16  
T R Hynes  R O Fox 《Proteins》1991,10(2):92-105
The crystal structure of staphylococcal nuclease has been determined to 1.7 A resolution with a final R-factor of 16.2% using stereochemically restrained Hendrickson-Konnert least-squares refinement. The structure reveals a number of conformational changes relative to the structure of the ternary complex of staphylococcal nuclease 1,2 bound with deoxythymidine-3',5'-diphosphate and Ca2+. Tyr-113 and Tyr-115, which pack against the nucleotide base in the nuclease complex, are rotated outward creating a more open binding pocket in the absence of nucleotide. The side chains of Ca2+ ligands Asp-21 and Asp-40 shift as does Glu-43, the proposed general base in the hydrolysis of the 5'-phosphodiester bond. The significance of some changes in the catalytic site is uncertain due to the intrusion of a symmetry related Lys-70 side chain which hydrogen bonds to both Asp-21 and Glu-43. The position of a flexible loop centered around residue 50 is altered, most likely due to conformational changes propagated from the Ca2+ site. The side chains of Arg-35, Lys-84, Tyr-85, and Arg-87, which hydrogen bond to the 3'- and 5'-phosphates of the nucleotide in the nuclease complex, are unchanged in conformation, with packing interactions with adjacent protein side chains sufficient to fix the geometry in the absence of ligand. The nuclease structure presented here, in combination with the stereochemically restrained refinement of the nuclease complex structure at 1.65 A, provides a wealth of structural information for the increasing number of studies using staphylococcal nuclease as a model system of protein structure and function.  相似文献   

10.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

11.
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3Dpol, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3Dpol have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3Dpol enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3Dpol provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3Dpol also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.  相似文献   

12.
Neutral protease from Bacillus cereus exhibits a 73% amino acid sequence homology to thermolysin, for which an accurate crystal structure exists. The B. cereus enzyme is, however, markedly less thermostable. The neutral protease was crystallized and diffraction data to 3.0 A resolution were recorded by oscillation photography. The crystal structure was solved by molecular replacement methods using thermolysin as a trial molecule. The solution was improved by rigid-body refinement and model rebuilding into electron density omit-maps. The atomic co-ordinates were refined to R = 21.7% at 3.0 A resolution. Comparison of the resultant model with the thermolysin structure shows that the two enzymes are very similar with a root-mean-square deviation between equivalent C alpha-atoms of 0.88 A. The gamma-turn found in thermolysin is transformed into a beta-turn in the neutral protease by the insertion of a glycine residue. There appear to be no contributions to the enhanced thermostability of thermolysin from additional salt bridges, whereas contributions in the form of extra hydrogen bonding interactions could be important. Other factors that may affect thermostability include the two glycine to alanine exchanges and perturbations in the environment of the double calcium site.  相似文献   

13.
Cholesterol oxidase (3 beta-hydroxysteroid oxidase, EC 1.1.3.6) is an FAD-dependent enzyme that carries out the oxidation and isomerization of steroids with a trans A : B ring junction. The crystal structure of the enzyme from Brevibacterium sterolicum has been determined using the method of isomorphous replacement and refined to 1.8 A resolution. The refined model includes 492 amino acid residues, the FAD prosthetic group and 453 solvent molecules. The crystallographic R-factor is 15.3% for all reflections between 10.0 A and 1.8 A resolution. The structure is made up of two domains: an FAD-binding domain and a steroid-binding domain. The FAD-binding domain consists of three non-continuous segments of sequence, including both the N terminus and the C terminus, and is made up of a six-stranded beta-sheet sandwiched between a four-stranded beta-sheet and three alpha-helices. The overall topology of this domain is very similar to other FAD-binding proteins. The steroid-binding domain consists of two non-continuous segments of sequence and contains a six-stranded antiparallel beta-sheet forming the "roof" of the active-site cavity. This large beta-sheet structure and the connections between the strands are topologically similar to the substrate-binding domain of the FAD-binding protein para-hydroxybenzoate hydroxylase. The active site lies at the interface of the two domains, in a large cavity filled with a well-ordered lattice of 13 solvent molecules. The flavin ring system of FAD lies on the "floor" of the cavity with N-5 of the ring system exposed. The ring system is twisted from a planar conformation by an angle of approximately 17 degrees, allowing hydrogen-bond interactions between the protein and the pyrimidine ring of FAD. The amino acid residues that line the active site are predominantly hydrophobic along the side of the cavity nearest the benzene ring of the flavin ring system, and are more hydrophilic on the opposite side near the pyrimidine ring. The cavity is buried inside the protein molecule, but three hydrophobic loops at the surface of the molecule show relatively high temperature factors, suggesting a flexible region that may form a possible path by which the substrate could enter the cavity. The active-site cavity contains one charged residue, Glu361, for which the side-chain electron density suggests a high degree of mobility for the side-chain. This residue is appropriately positioned to act as the proton acceptor in the proposed mechanism for the isomerization step.  相似文献   

14.
The use of non-crystallographic symmetry restraints in the refinement of the haemocyanin hexamer from Panulirus interruptus at 3.2 A resolution has resulted in a final model with a very reasonable geometry and a crystallographic R-factor of 20.1%, using 59,193 observed structure factor amplitudes between 8.0 and 3.2 A. The mean co-ordinate error is approximately 0.35 A. The six subunits appear to be related by symmetry operations that differ slightly from 32 point group symmetry. The six subunits have essentially maintained the same structure. The hexamer, with point group 32, is best described as a trimer of "tight dimers". The contacts between the subunits in such a dimer are more numerous, and better conserved during evolution than contacts in a trimer. The interface of a tight dimer is separated by an internal cavity into two "contact areas". The contact area nearest to the centre of the hexamer is most extensive and consists mainly of residues that are quite conserved among arthropodan haemocyanins. All these residues are provided by the second domain of each subunit. Hence, this second domain may play a crucial role in the allosteric functioning of this oxygen transport protein. The dinuclear copper oxygen-binding site resides in the centre of domain 2. This oxygen-binding centre is not fully accessible from the solvent. Three large cavities occur, however, within each subunit at the interfaces of the three domains. All three cavities contain ordered water molecules, and two of them are accessible from the surrounding solvent. These cavities may play a role in facilitating fast movement of dioxygen towards the binding site, which is situated in a highly conserved, rather hydrophobic core. A detailed definition of the geometry of the copper site is, of course, not possible at the limited resolution of 3.2 A. Nevertheless, it is possible to conclude that each copper is co-ordinated by two, more or less tightly bound, histidine ligands and one more distant histidine residue. The six histidine residues utilize their N epsilon atoms for copper co-ordination, while their N delta atoms are engaged in hydrogen bonds with conserved residues or water molecules. The two distant histidine ligands are located in apical positions and are on opposite sides with respect to the plane approximately defined by the four more tightly bound histidine ligands and the two copper ions. The copper-to-copper distance is 3.5 to 3.6 A in four of the subunits, but this distance deviates considerably in two others.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization. The refined structure shows novel qualities of the HK97 shell protein, gp5 that, together with the protease gp4, guides the assembly and maturation of the virion. Although gp5 forms hexamers and pentamers and the subunits exist in different structural environments, the tertiary structures of the seven protein molecules in the viral asymmetric unit are closely similar. The interactions of the subunits in the shell are exceptionally complex with each subunit interacting with nine other subunits. The interactions of the N-terminus released after gp5 cleavage appear important for organization of the loops that become crosslinked to the core of a neighboring subunit at the maturation. A comparison with a model of the Prohead II structure revealed that the surfaces of non-covalent contact between the monomers that build up hexamers/pentamers are completely redefined during maturation.  相似文献   

16.
The structure and flexibility of saccharides have a profound and specific influence in several biological processes such as protein protection and the maintenance of conformational integrity, and in recognition events involving viruses, enzymes, and lectins. To establish the structural bases of these phenomena, we describe herein the extensively refined 2.3-A resolution x-ray structure of a biantennary octasaccharide of the N-acetyllactosamine type, complexed to isolectin I from Lathyrus ochrus. The two octasaccharides are located in clefts at each end of the long axis of the lectin. The conformations of both the lectin and the saccharide are slightly modified upon binding. The complex is stabilized by numerous hydrogen bonds, many of them involving water molecules. It is also stabilized by van der Waals interactions, including some with aromatic residues. A more general model of a possible lectin-glycoprotein interaction is also proposed.  相似文献   

17.
The crystal structure of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the bovine prothrombin kringle 1 (PTK1) structure as a model and refined by restrained least-squares methods to an R factor of 14.2% at 1.9-A resolution. The K4 structure is similar to that of PTK1, and an insertion of one residue at position 59 of the latter has minimal effect on the protein folding. The PGK4 structure is highly stabilized by an internal hydrophobic core and an extensive hydrogen-bonding network. Features new to this kringle include a cis peptide bond at Pro30 and the presence of two alternate, perpendicular, and equally occupied orientations for the Cys75 side chain. The K4 lysine-binding site consists of a hydrophobic trough formed by the Trp62 and Trp72 indole rings, with anionic (Asp55/Asp57) and cationic (Lys35/Arg71) charge pairs at either end. With the adjacent Asp5 and Arg32 residues, these result in triply charged anionic and cationic clusters (pH of crystals at 6.0), which, in addition to the unusually high accessibility of the Trp72 side chain, serve as an obvious marker of the binding site on the K4 surface. A complex intermolecular interaction occurs between the binding sites of symmetry-related molecules involving a highly ordered sulfate anion of solvation in which the Arg32 side chain of a neighboring kringle occupies the binding site.  相似文献   

18.
The crystal structure of pea lectin at 3.0-A resolution   总被引:7,自引:0,他引:7  
The structure of pea lectin has been determined to 3.0-A resolution based on multiple isomorphous replacement phasing to 6.0-A resolution and a combination of single isomorphous replacement, anomalous scattering, and density modification to 3.0-A resolution. The pea lectin model has been optimized by restrained least squares refinement against the data between 7.0- and 3.0-A resolution. The final model at 3.0 A gives an R factor of 0.24 and a root mean square deviation from ideal bond distances of 0.02 A. The two monomers in the asymmetric unit are related by noncrystallographic 2-fold symmetry to form a dimer. Monomers were treated independently in modeling and refinement, but are found to be virtually identical at this resolution. The molecular structure of the pea lectin monomer is very similar to that of concanavalin A, the lectin from the jack bean. Similarities extend from secondary and tertiary structures to the occurrence of a cis-peptide bond and the pattern of coordination of the Ca2+ and Mn2+ ions. Differences between the two lectin structures are confined primarily to the loop regions and to the chain termini, which are different and give rise to the unusual permuted relationship between the pea lectin and concanavalin A protein sequences.  相似文献   

19.
Structure of ubiquitin refined at 1.8 A resolution   总被引:35,自引:0,他引:35  
The crystal structure of human erythrocytic ubiquitin has been refined at 1.8 A resolution using a restrained least-squares procedure. The crystallographic R-factor for the final model is 0.176. Bond lengths and bond angles in the molecule have root-mean-square deviations from ideal values of 0.016 A and 1.5 degrees, respectively. A total of 58 water molecules per molecule of ubiquitin are included in the final model. The last four residues in the molecule appear to have partial occupancy or large thermal motion. The overall structure of ubiquitin is extremely compact and tightly hydrogen-bonded; approximately 87% of the polypeptide chain is involved in hydrogen-bonded secondary structure. Prominent secondary structural features include three and one-half turns of alpha-helix, a short piece of 3(10)-helix, a mixed beta-sheet that contains five strands, and seven reverse turns. There is a marked hydrophobic core formed between the beta-sheet and alpha-helix. The molecule features a number of unusual secondary structural features, including a parallel G1 beta-bulge, two reverse Asx turns, and a symmetrical hydrogen-bonding region that involves the two helices and two of the reverse turns.  相似文献   

20.
Structure of calmodulin refined at 2.2 A resolution   总被引:43,自引:0,他引:43  
The crystal structure of mammalian calmodulin has been refined at 2.2 A (1 A = 0.1 nm) resolution using a restrained least-squares method. The final crystallographic R-factor, based on 6685 reflections in the range 2.2 A less than or equal to d less than or equal to 5.0 A with intensities exceeding 2.5 sigma, is 0.175. Bond lengths and bond angles in the molecule have root-mean-square deviations from ideal values of 0.016 A and 1.7 degrees, respectively. The refined model includes residues 5 to 147, four Ca2+ and 69 water molecules per molecule of calmodulin. The electron density for residues 1 to 4 and 148 is poorly defined, and they are not included in the model. The molecule is shaped somewhat like a dumbbell, with an overall length of 65 A; the two lobes are connected by a seven-turn alpha-helix. Prominent secondary structural features include seven alpha-helices, four Ca2+-binding loops, and two short, double-stranded antiparallel beta-sheets between pairs of adjacent Ca2+-binding loops. The four Ca2+-binding domains in calmodulin have a typical EF hand conformation (helix-loop-helix) and are similar to those described in other Ca2+-binding proteins. The X-ray structure determination of calmodulin shows a large hydrophobic cleft in each half of the molecule. These hydrophobic regions probably represent the sites of interaction with many of the pharmacological agents known to bind to calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号