首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

2.
Our goal was to determine the influence of a complete lack of neuromuscular activity, during a period of rapid muscle growth, on muscle morphology and contractile function. Rats, 21 days old, had one hindlimb paralyzed for a period of 7-9 consecutive days by repetitive implantation of a silastic cuff containing tetrodotoxin (TTX), a specific nerve impulse conduction blocker, around the sciatic nerve. In situ isometric contractile properties of gastrocnemius were measured at 31 days of age, and muscles were subsequently examined histologically. Normal growth during this period resulted in a two- to three-fold increase in muscle weights, mean muscle fiber cross-sectional areas and increases in absolute twitch and tetanic tensions. After inactivity from 21 to 30 days of age, gastrocnemius muscles were smaller, and tetanically weaker, than age-matched controls. The normal cross-sectional area increase of fast-twitch fibers was preferentially affected. Inactive muscles also demonstrated significantly slower twitch responses, had higher twitch:tetanus ratios and relative tensions at 25 Hz than age-matched controls, suggesting a "slower" contractile response. On the other hand, maximum rate of tetanic tension development was elevated. These effects of inactivity appeared to be reversed by resumption of normal activity for 4 days. Neuromuscular inactivity during a relatively short period of rapid muscle growth causes significant muscle morphological and contractile changes, which are most likely reversible.  相似文献   

3.
The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p less than 0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2-14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (P greater than 0.1) during immobilization, but the 50 Hz tetanic tension (Po50) and maximal voluntary contraction (MVC) were reduced (p less than 0.05). The fall in Po50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in Po50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p less than 0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Formation of neuromuscular connections in mammals may involve a hierarchy of efficiency of synapse formation at a stage when motor nerves have already contacted muscle fibers and during the transitional period of multiple innervation. In an attempt to test for such a hierarchy, we examined, in neonatal rats, the relative efficiency of reinnervation by foreign or original nerves implanted simultaneously in a large muscle so that competition for muscle fibers was minimized. The tibial nerve, containing gastrocnemius nerve fibers, and the “foreign” peroneal nerve were implanted into the denervated lateral gastrocnemius muscle. One to five months later, indirect tetanic tensions obtained upon stimulating the implanted nerves were measured by isometric techniques and were compared to contralateral control muscles. When both nerves were implanted side by side at the end-plate region, approximately equal tetanic tensions were obtained at the time of testing. The same result was also obtained when the tibial and common peroneal nerves were implanted into non-end-plate and end-plate regions, respectively. However, in the reverse experiment, the tibial nerve implanted at the end-plate region produced significantly higher tetanic tension than the peroneal nerve at the non-end-plate site in the same muscle. Thus, the original nerve, compared to a foreign nerve, appeared to reinnervate neonatal muscle more effectively, but this was only revealed under conditions where access to former end-plate regions was unequal.  相似文献   

5.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

6.
A method is presented for the estimation of the complete time course of muscle active state. The method is based on the selection of a proper model for the muscle, consisting of linear and non-linear components, and on the estimation of its parameters from a simple experiment. The model's parameters are estimated, using the least square method, from measurements of a tetanized muscle's response to a change of its length. The time course of the active state is calculated from an isometric twitch tension response of the same muscle. The twitch tension response is taken as the system's output, and the active state as its input. The latter can be estimated since the system parameters have already been estimated from the tetanized muscle experiment. Experiments were performed on the gastrocnemius muscle of frogs and cats. Results are given for the whole active state time course of these muscles. The results show that the peak active state force does not reach tetanic value, and a negative force is generated during the relaxation period. Additional experiments were carried out with the purpose of verifying the existence of this force; however, no conclusive results were obtained.This research was supported by the Julius Silver Institute of Bio-Medical Engineering Sciences, Grant 050-304  相似文献   

7.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length.  相似文献   

8.
This investigation examined the mechanical responses of malignant hyperthermic (MH) and normal porcine skeletal muscle to repetitive stimulation. Twitch and maximal tetanic tensions were not significantly different between muscle types. Tensions produced during stimulation at 20-80 Hz were significantly less in MH muscle than in normal muscle. In addition, MH muscle showed significantly greater force decline (tetanic fade) at the end of contractions evoked by 20-80 Hz stimulation. When stimulated to fatigue, both normal and MH muscle exhibited similar rates of tension decline during the initial minutes. Further stimulation caused additional decline in normal muscle, but a tension plateau in MH muscle. In all cases, normal muscle had greater magnitudes of fatigue than did MH muscle. Results show that there are marked differences between MH and normal muscle in the mechanical responses to repetitive stimulation. Due to its inability to properly regulate intracellular Ca2+ exchange, it is possible that MH muscle might be a useful tool for identifying the mechanisms of muscle fatigue in normal muscle.  相似文献   

9.
Motor units of the medial gastrocnemius (MG) and the single lateral gastrocnemius/soleus (LG/S) muscles of the opossum (Didelphis virginiana) were found to have uniformly slow contraction times relative to homologous muscles of the cat. Though a broad range of peak tetanic tensions was found among motor units from both muscles, most of the motor units were quite large relative to tension of the whole muscle. Comparison of the relative sizes of motor units showed that those of LG/S are significantly larger and slower than the units of MG. This suggests that the motor units of the two muscles may be differentially recruited during different behaviors. All of the MG and LG/S motor units were highly or moderately resistant to fatigue. Histochemical staining for NADH-diaphorase activity indicated consistently high levels of the enzyme in all of the fibers of both muscles. Apparently, all of the fast motor units consist of fast oxidative/glycolytic (FOG)-type muscle fibers. Our data provide functional evidence that the types of myofibrillar ATPase demonstrated by Brooke and Kaiser ('70), are not necessarily correlated to physiological classification of fiber types as slow oxidative (SO), fast oxidative/glycolytic (FOG), and fast glycolytic (FG) (Peter et al., '72). Perhaps compartmentalization of muscle fiber types may be a first step in the separation of muscles into multiple heads during the evolution of specialization to diverse locomotor habits among the mammals.  相似文献   

10.
Ten rats were trained to perform approximately 30 jumps/day, 5 days/wk for at least 8 wk, from a force platform that enabled the number and height of jumps to be quantified. There was considerable variation in height jumped during an activity session both within and between rats. The two highest-jumping rats attained a displacement of center of mass of approximately 30 cm, estimated to be approximately 67% of the maximum attainable. The two lowest-jumping rats jumped to approximately 30% of the estimated maximum. The activity was described as "habitual activity" rather than "training" because there were no significant increases in the height of jumping by any rat over the period of activity. The isometric properties of medial gastrocnemius (MG) and soleus muscles were studied in terminal experiments on anesthetised rats. Five significant effects on MG were evoked by this pattern of exercise ("habituation"): 1) a 15-18% increase in force at frequencies of stimulation between 60 and 150 Hz and a 15% increase in maximum tetanic tension to 14.9 N, 2) a 3% increase in the maximum rate of rise of tetanic force to 3.4% of maximum tetanic tension per millisecond, 3) an increase in fatigability expressed as a smaller fatigue index in active rats (33%) than in controls (58%), 4) a decrease of 4% in the percentage of type IIa muscle fibers, and 5) an increase of 6% in the percentage of type II fibers that could not be classified with certainty as IIa or IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A numerical model of a muscle fiber as 400 sarcomeres, identical except for their initial lengths, was used to simulate fixed-end tetanic contractions of frog single fibers at sarcomere lengths above the optimum. The sarcomeres were represented by a lumped model, constructed from the passive and active sarcomere length-tension curves, the force-velocity curve, and the observed active elasticity of a single frog muscle fiber. An intersarcomere force was included to prevent large disparities in lengths of neighboring sarcomeres. The model duplicated the fast rise, slow creep rise, peak, and slow decline of tension seen in tetanic contractions of stretched living fibers. Decreasing the initial non-uniformity of sarcomere length reduced the rate of rise of tension during the creep phase, but did not decrease the peak tension reached. Limitations of the model, and other processes that might contribute to the shape of the fixed end tetanic tension record are discussed. Taking account of model and experimental results, it is concluded that the distinctive features of the tension records of fixed end tetanic contraction at lengths beyond optimum can be explained by internal motion within the fiber.  相似文献   

12.
The rat soleus (SOL) or medial gastrocnemius (MG) were chronically overloaded by removing their major synergists bilaterally. After 12-14 wks the overloaded SOL (OS) and overloaded MG (OMG) muscles had approximately 50% greater cross-sectional areas (CSA) than the controls. Maximum twitch (Pt) and tetanic (Po) tensions were approximately 46% larger in the OS compared with the normal SOL. The OMG produced 10 and 37% higher Pt and Po, respectively. Specific tension (Po/CSA) was not altered in either group (P greater than 0.05). Contraction times and half-relaxation times were unchanged. Myofibrillar and myosin ATPase specific activities indicated a shift toward that resembling a slower muscle in both the OS and the red portion but not the white portion of the OMG. Generally, markers of glycogen metabolism were reduced (P less than 0.05) in the same muscle areas that showed reduced ATPase activity. These biochemical results were consistent with the apparent histochemical conversion of fibers from fast-twitch, glycolytic----fast-twitch, oxidative-glycolytic----slow-twitch, oxidative types in these muscle areas. These results suggest that overloading either a fast- or slow-twitch plantarflexor results in an increase in muscle mass and maximum tension and in metabolic shifts that generally resemble those observed in a slower muscle. Further, the degree of adaptation appears to be related to the initial fiber type composition of the muscle and/or of the muscle region.  相似文献   

13.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

14.
Barry M. Lubek 《Steroids》1984,44(6):485-495
Rats were maintained for 8 weeks on a program of twice weekly subcutaneous injections of 0.075 mg Dianabol (methandrostenolone) and treadmill running to investigate the ability of this compound to increase skeletal muscle contractility. The lateral gastrocnemius isometric twitch and tetanic tensions of the Dianabol Exercise group were both 1.5 times that of the Control animals. Treatment with either Dianabol or exercise alone did not affect the contractile strength of this muscle. The contractility of the soleus was not altered by any of the treatments employed. Withholding of steroid injections midway through the 8 week treatment period while maintaining exercise administration did not alter the effect observed in the Dianabol Exercise group. It is concluded from the results of this study that concomitant administration of Dianabol and exercise for 8 weeks can have a marked effect on isometric force characteristics of skeletal muscle in young adult male rats.  相似文献   

15.
Physiological parameters and activity were recorded monthly on 19 men wintering at a polar base. A comparison was made between those in their first Antarctic winter (Group A, n = 13) and those in their second consecutive Antarctic winter (Group B, n = 6). Group A were more active (p less than 0.001) and spent more time outside (p less than 0.001) during the summer months than during the darker and colder winter period. Combined data showed no correlation between total activity and meteorological conditions, but a clear (p less than 0.001) negative correlation with time spent outside and wind speed. In the first part of the year group A became fitter (as shown by a lower heart rate at a VO2 1.51 min-1), increased basal oxygen uptake under standard conditions and put on body and fat mass. These changes were not demonstrated in group B living and working under identical conditions. Lean body mass of both groups rose throughout the year (A, p less than 0.001; B, p less than 0.05). These data suggested that the changes in physiological parameters in group A were in response to the life style and activity of a polar base, rather than to the Antarctic climate per se.  相似文献   

16.
Synaptosomes were isolated from Yakutian ground squirrel brain cortex of summer and winter hibernating animals in active and torpor states. Synaptosomal membrane cholesterol and phospholipids were determined. The seasonal changes of synaptosomal lipid composition were found. Synaptosomes isolated from hibernating Yakutian ground squirrel brain cortex maintained the cholesterol sphingomyelin, phosphatidylethanolamine, lysophosphatidylcholine, cardiolipin, phosphatidylinositol and phosphatidylserine contents 2.5, 1.8, 2.6, 1.8, 1.6, and 1.3 times less, respectively, and the content of phosphatidylcholine twice as much as the one in summer season. The synaptosomal membrane lipid composition of summer animals was shown to be markedly different from that as hibernating ground squirrels and non-hibernating rodents. It is believed that phenotypic changes of synaptosomal membrane lipid composition in summer Yakutian ground squirrel are the important preparation step for hibernation. The phosphatidylethanolamine content was increased in torpor state compared with winter-active state and the molar ratio of cholesterol/phospholipids in synaptosomal membrane of winter torpor ground squirrels was lower than that in active winter and summer animals. These events were supposed to lead to increase of the synaptosomal membrane fluidity during torpor. Synaptosomes isolated from torpor animals have larger sizes and contain a greater number of synaptic vesicles on the synaptosomal profile area. The synaptosomal membrane lipid composition and synaptosome morphology were involved in phenotypic adaptation of Yakutian ground squirrel to hibernation.  相似文献   

17.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

18.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

19.
The physiology of small mammalian hibernators shifts profoundly over a year, from summer homeothermy to winter heterothermy. Torpor-arousal cycles define high-amplitude tissue activity fluctuations in winter, particularly for skeletal muscle, which contributes to the energetically demanding rewarming process via shivering. To better understand the biochemistry underlying summer-winter and torpor-arousal transitions, we applied two-dimensional gel electrophoresis coupled with liquid chromatography/mass spectrometry/mas spectrometry to the soluble proteins from hindlimb muscle of 13-lined ground squirrels (Ictidomys tridecemlineatus) in two summer and six winter states. Two hundred sixteen protein spots differed by sampled state. Significantly, intrawinter protein adjustment was a minor component of the dataset despite large discrepancies in muscle activity level among winter states; rather, the bulk of differences (127/138 unequivocally identified proteins spots) occurred between summer and winter. We did not detect any proteomic signatures of skeletal muscle atrophy in this hibernator nor any differential seasonal regulation of protein metabolism. Instead, adjustments to metabolic substrate preferences dominated the detected proteomic differences. Pathways of carbohydrate metabolism (glycolysis and gluconeogenesis) were summer enriched, whereas the winter proteome was enriched for fatty acid β-oxidation. Nevertheless, our data suggest that some reliance on carbohydrate reserves is maintained during winter. Phosphoglucomutase (PGM1), which reversibly prepares glucose subunits for either glycolysis or glycogenesis, showed apparent winter state-specific phosphorylation. PGM1 was phosphorylated during rewarming and dephosphorylated by interbout arousal, implying that glucose supplements lipid fuels during rewarming. This, along with winter elevation of TCA cycle enzymes, suggests that hindlimb muscles are primed for rapid energy production and that carbohydrates are an important fuel for shivering thermogenesis.  相似文献   

20.
The increase in stiffness of cat peroneus longus muscle elicited by the contraction of homogeneous groups of motor units (slow, fast fatigue-resistant and fast fatigable) was measured during sinusoidal stretches (20-80 Hz) of small amplitude (40-100 micron). For comparable tetanic tensions, slow units increase muscle stiffness more than fast unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号