首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

2.
Effects of the calmodulin antagonists chlorpromazine, trifluoperazine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide on phospholipid metabolism were examined in rabbit platelets using [3H]serine, [3H]ethanolamine, [3H]choline, and [3H]glycerol. All these drugs markedly stimulated the incorporation of [3H]serine into phosphatidylserine. On the other hand, these drugs had only a slight effect on the rate of incorporation of [3H]ethanolamine and [3H]choline into the corresponding phospholipid. When [3H]glycerol was used as a precursor of the phospholipids, 3H-labeled phospholipids were mainly composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Although the phosphorus content of phosphatidylserine was about 40% of that of phosphatidylcholine in rabbit platelets, the amount of phosphatidylserine labeled with [3H]glycerol was less than 2% of that of the labeled phosphatidylcholine, and calmodulin antagonists slightly stimulated the incorporation of [3H]glycerol into phosphatidylserine. Treatment with calmodulin antagonists caused a marked decrease in the content of endogenous free serine with concomitant increase in the contents of endogenous free ethanolamine and choline. On the other hand, the contents of other free amino acids, including essential and non-essential amino acids, were unchanged. These results suggest that the calmodulin antagonists we used did not affect de novo synthesis of phosphatidylserine, but did stimulate the serine phospholipid base-exchange reaction in rabbit platelets.  相似文献   

3.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

4.
A simple assay for phosphatidylserine decarboxylase is described. Following incubation of a mitochondrial fraction from Saccharomyces cerevisiae with purified, exogenous phosphatidyl[3H]serine, the lipid extract is applied to a small DEAE-cellulose column equilibrated in CHCI3-CH3OH (1:1). The unreacted substrate, phosphatidyl[3H]serine, is quantitatively bound by the ion-exchange column while the product, phosphatidyl[3H]ethanolamine, is eluted by sequential washing with CHCI3-CH3OH (1:1) and CH3OH. The organic solvents are evaporated, and the amount of radiolabeled phosphatidyl[3H]ethanolamine formed by enzymatic decarboxylation is determined by liquid scintillation spectrometry. The reliability of this assay was established by showing that several enzymatic properties of the yeast enzyme, defined by the new assay, were essentially identical to the properties characterized by a more tedious paper chromatographic assay described previously. Virtually identical rates of enzymatic decarboxylation of phosphatidyl[3H]serine were also obtained for mitochondrial fractions from pig brain and rat liver when the activities were compared by the column and paper chromatographic methods.  相似文献   

5.
The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells (0.62 +/- 0.07 nmol/mg of protein versus 0.27 +/- 0.05 nmol/mg of protein, respectively). Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine (25 microM) decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine. The results show that an extracellular source of ethanolamine significantly influences the phospholipid metabolism of cultured bovine aortic endothelial cells.  相似文献   

6.
The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on phospholipid metabolism was examined in clonal rat osteogenic sarcoma cells, UMR 106, of osteoblastic phenotype. Treatment of UMR 106 cells with 10(-8)M 1,25-(OH)2D3 for 48 h caused an increase in [14C]serine incorporation into phosphatidylserine (PS) and a decrease in [3H]ethanolamine, [3H]linositol, and [14C]choline incorporation into phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylcholine, respectively; the decrease in [3H]ethanolamine incorporation into PE was the largest. The total contents of phospholipids were similarly affected by 10(-8)M 1,25-(OH)2D3 treatment, suggesting that the effects of 1,25-(OH)2D3 are due largely to alterations in the synthesis of these phospholipids. The effects of 1,25-(OH)2D3 were evident at 10(-10) M 1,25-(OH)2D3, and 10(-8)M 1,25-(OH)2D3 caused a maximal stimulation of [14C]PS synthesis (167% of control) and a maximal reduction in the [3H]PE synthesis (41% of control). The [14C]PS/[3H]PE ratio increased gradually and reached a maximum after 70 h of treatment with 10(-8)M 1,25-(OH)2D3. When the cells were cultured in calcium-free medium containing 0.5 mM EGTA or when 5 microM cycloheximide was added to the medium, the effect of 1,25-(OH)2D3 on phospholipid metabolism was almost completely inhibited. Neither 25-hydroxyvitamin D3 nor 24,25-dihydroxyvitamin D3 caused significant changes in phospholipid metabolism. These results suggest that 1,25-(OH)2D3 alters phospholipid metabolism by enhancing PS synthesis through a calcium-dependent stimulation of the base exchange reaction of serine with other phospholipids and that the effect of 1,25-(OH)2D3 requires the synthesis of new proteins. Because PS is thought to be important for apatite formation and bone mineralization by binding calcium and phosphate to form calcium-PS-phosphate complexes, the present data suggest that 1,25-(OH)2D3 may stimulate bone mineralization by a direct effect on osteoblasts, stimulating PS synthesis.  相似文献   

7.
A tritium suicide procedure was devised to facilitate the isolation of Chinese hamster ovary cell mutants defective in phosphatidylethanolamine biosynthesis. One mutant with a 20-50% reduction in [3H]ethanolamine incorporation was chosen for further analysis and was shown to have reduced activity of CTP: phosphoethanolamine cytidylyltransferase. Levels of phosphatidylethanolamine and rates of its biosynthesis were compared in the mutant and parent cell lines. Despite the reduced activity of the CDP-ethanolamine pathway in the mutant, levels of phosphatidylethanolamine were the same in mutant and parent cells. Rates of phosphatidylethanolamine synthesis de novo, as measured by incorporation of 32PO4 into phosphatidylethanolamine, were also the same in mutant and parent cells, as was the rate of incorporation of [3H]serine into both phosphatidylserine and phosphatidylethanolamine. After a long term labeling with [3H]serine, the specific radioactivity of phosphatidylserine was the same as that of phosphatidylethanolamine, and there was no difference in the specific radioactivities of the two lipids between mutant and parent cells. These results implicate decarboxylation of phosphatidylserine as the sole route for synthesis of phosphatidylethanolamine under normal culture conditions.  相似文献   

8.
Epithelial cells and some of their transformed derivatives require ethanolamine to grow normally in defined culture medium. When these cells are cultured without ethanolamine, the amount of cellular phosphatidylethanolamine is considerably reduced. Using a set of rat mammary carcinoma cell lines whose growth is responsive (64-24 cells) and not responsive (22-1 cells) to ethanolamine, the biochemical mechanism of ethanolamine responsiveness was investigated. The biosynthesis and metabolism of phospholipid, particularly of those involving phosphatidylethanolamine, were thus compared between the two types of cells. The incorporation of [3H]serine into phosphatidylserine and phosphatidylethanolamine in 64-24 cells was 60 and 37%, respectively, of those in 22-1 cells. However, the activity of phosphatidylserine decarboxylase was virtually the same in these cell lines. When these cells were cultured in the presence of [32P]phosphatidylcholine and [32P]phosphatidylethanolamine, the rate of accumulation of 32P-labeled phosphatidylserine from the radioactive phosphatidylethanolamine was considerably reduced in 64-24 cells compared to that in 22-1 cells, although the rate of synthesis of phosphatidylserine and phosphatidylethanolamine from the radioactive phosphatidylcholine was similar between the two cell lines. The rate of labeling phosphatidylcholine from the radioactive phosphatidylethanolamine was also reduced in 64-24 cells, although the difference was not as great as that of phosphatidylserine. Incorporation of 32P into phosphatidylethanolamine was correlated with the concentration of ethanolamine in the culture medium in 64-24 cells, whereas in 22-1 cells the incorporation was not influenced by ethanolamine. Enzyme activities of the CDP-ethanolamine pathway were not significantly different between the two cell lines. The rate of degradation of phosphatidylethanolamine was also similar in these cell lines. These results show that ethanolamine responsiveness of 64-24 cells, and probably other epithelial cells, is due to a limited ability to synthesize phosphatidylserine resulting from a limited base-exchange activity utilizing phosphatidylethanolamine.  相似文献   

9.
Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with 32Pi and L-[U-14C]serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.  相似文献   

10.
The synthesis of phosphatidylserine and its translocation to the mitochondria were examined in permeabilized Chinese hamster ovary (CHO)-K1 cells by following the metabolism of a [3H]serine precursor to [3H] phosphatidylserine (PtdSer) and [3H]phosphatidylethanolamine (PtdEtn). In physiological salt solutions approximating the intracellular ionic composition, both the synthesis of PtdSer and its translocation required ATP. The ATP requirement for PtdSer synthesis could be completely bypassed, and that for translocation could be partially bypassed at Ca2+ concentrations 10(3)-10(4) times the intracellular physiological level (i.e. 1 mM). The ATP-dependent synthesis of PtdSer could be inhibited by chelation of Ca2+ with EGTA, inhibition of Ca2+ sequestration with 2,5-di(tert-butyl)hydroquinone, mobilization of sequestered Ca2+ with ionomycin, and competition for [3H]serine with ethanolamine. The inhibition of the ATP-dependent synthesis of PtdSer by the aforementioned inhibitors provided an efficient method to rapidly arrest the incorporation of [3H]serine into [3H]PtdSer. By pulse-labeling the [3H]PtdSer pool and arresting further synthesis with inhibitors, the translocation of nascent PtdSer could be uncoupled from synthesis. The results of these pulse-labeling-arrest experiments provide unambiguous evidence that PtdSer translocation to the mitochondria is not driven by PtdSer synthesis. The addition of apyrase to ATP-supplemented, permeabilized cells abruptly terminates [3H]serine incorporation into [3H]PtdSer and the decarboxylation of [3H]PtdSer to [3H]PtdEtn, thereby demonstrating that a specific ATP requirement exists for the translocation of nascent PtdSer to the mitochondria in permeabilized cells. The translocation of nascent PtdSer to the mitochondria was unaffected by 45-fold dilution of the standard reaction thus indicating that the translocation intermediate was unlikely to be a freely diffusible complex. The requirements for translocation of nascent phosphatidylserine are different from those for the vesicular movement of proteins insofar as the lipid movement does not require cytosol and is unaffected by the addition of Ca2+, GTP, or GTP gamma S. From these studies, we conclude that: 1) the synthesis and translocation of PtdSer can be readily studied in permeabilized cells, 2) the ATP-dependent synthesis of PtdSer is functionally coupled to the ATP-dependent sequestration of Ca2+ by the endoplasmic reticulum or closely related membranes, 3) PtdSer translocation is independent of its synthesis, and 4) there is a specific requirement for ATP in the translocation of PtdSer to the mitochondria.  相似文献   

11.
The exposure of phosphatidylserine toward the external surface of the membrane is a well-established event of programmed cell death. The possibility that an apoptotic stimulus influences the metabolism of this phospholipid could be relevant not only in relation to the previously mentioned event but also in relation to the capability of membrane phosphatidylserine to influence PKC activity. The present investigation demonstrates that treatment of mouse thymocytes with the apoptotic stimulus dexamethasone, enhances the incorporation of [3H]serine into phosphatidylserine. Cell treatment with dexamethasone also enhanced the activity of serine base exchange enzyme, assayed in thymocyte lysate. Both the effects were observed at periods of treatment preceding DNA fragmentation. The addition of unlabelled ethanolamine, together with [3H]serine to the medium containing dexamethasone-treated thymocytes lowered the radioactivity into phosphatidylserine. Serine base exchange enzyme activity was influenced by the procedure used to prepare thymocyte lysate and was lowered by the addition of fluoroaluminate, that is widely used as a G-protein activator. The increase of serine base exchange enzyme activity induced by dexamethasone treatment was observed independently by the procedure used to prepare cell lysate and by the presence or absence of fluoroaluminate.  相似文献   

12.
A single-gene nuclear choline-requiring mutant of Saccharomyces cerevisiae was studied. Choline as a growth supplement to synthetic media could be substituted by low concentrations of dimethylethanolamine, monomethylethanolamine or ethanolamine. DL-Serine also supported growth, but only at high concentrations: on a molar basis it was approximately one hundred times less effective than choline. When cultured in unsupplemented medium the mutant cells soon ceased to grow. The growth-arrested cells contained less than one fifth of the phosphatidylethanolamine present in wild-type cells and only traces of phosphatidylserine. The relative content of the two phospholipid species was raised by growing the mutant cells in the presence of choline of the other supplements but still remained lower than in wild-type cells. The mutant cells depleted of phosphatidylethanolamine and phosphatidylserine had greatly diminished ability to fuse with other cells in mating and their protoplasts showed increased resistance to hypotonic lysis. Respiration was not substantially affected by the deficit of the two phospholipid species in the mutant. In cell-free preparations, the affinity of the phosphatidylserine synthesizing system for serine was found to be almost two orders of magnitude lower in the mutant than in the wild-type. The impairment of phosphatidylserine synthesis accounts for growth requirement and the abnormal phospholipid composition of the mutant cells.  相似文献   

13.
In several tissues and cell lines, serine utilized for phosphatidylserine (PS) synthesis is an eventual precursor of the base moiety of ethanolamine phosphoglycerides (PE). We investigated the biosynthesis and decarboxylation of PS in cultured C6 glioma cells, with particular attention to 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmenylethanolamine) biosynthesis. Incorporation of [3H]serine into PS reached a maximum within 4-8 h, and label in nonplasmenylethanolamine phosphoglyceride (NP-PE) and plasmenylethanolamine was maximal by 12-24 h and 48 h, respectively. After 8 h, label in PS decreased even though 40-60% of initial label remained in the culture medium. Serial additions of fresh [3H]serine restored PS synthesis to higher levels of labeled PS accumulation followed by a subsequent decrease in 4-8 h. High performance liquid chromatographic analyses confirmed that medium serine was depleted by 8 h, and thereafter metabolites, including acetate and formate, accounted for radioactivity in the medium. The rapid but transient appearance of labeled glycine and ATP inside the cells indicated conversion of serine by hydroxymethyltransferase. 78-85% of label from serine was in headgroup of PS or of PE formed by decarboxylation. A precursor-product relationship was suggested for label from [3H]serine appearing in the headgroup of diacyl, alkylacyl, and alkenylacyl subclasses of PE. By 48 h, a constant specific activity, ratio of approximately 1:1 was reached between plasmenylethanolamine and NP-PE, similar to the molar distribution of these lipids. In contrast, equilibrium was not achieved in cells incubated with [1,2-14C]ethanolamine; plasmenylethanolamine had 2-fold greater specific activity than labeled NP-PE by 72-96 h. These observations indicate that in cultured glioma cells 1) serine serves as a precursor of the head group of PS and of both plasmenyl and non-plasmenyl species of PE; 2) exchange of headgroup between NP-PE and plasmenylethanolamine may involve different donor pools of PE depending on whether the headgroup originates with exogenous serine or ethanolamine; 3) serine is rapidly converted to other metabolites, which limits exogenous serine as a direct phospholipid precursor.  相似文献   

14.
In the present study pulse-label and pulse-chase experiments with isolated rat hepatocytes in suspension were designed to investigate the effects of the presence of either serine or ethanolamine in the medium on the rate of phosphatidylethanolamine synthesis via the CDPethanolamine pathway and by decarboxylation of phosphatidylserine. Addition of serine to the medium did not affect the incorporation of [1,2-14C]ethanolamine into phosphatidylethanolamine. Pulse-label experiments showed that the incorporation of [3H]serine into phosphatidylserine decreased in the presence of ethanolamine with a corresponding decrease of the incorporation of label into the ethanolamine base moiety of phosphatidylethanolamine. However, the radioactivity in the diacylglycerol part of phosphatidylethanolamine was considerably higher in the presence of ethanolamine than in its absence. Pulse-chase experiments with labelled serine demonstrated that the conversion of phosphatidylserine to phosphatidylethanolamine was not affected by varying concentrations of ethanolamine. Our observations indicate that in the presence of ethanolamine the biosynthesis of phosphatidylethanolamine via the CDPethanolamine pathway is enhanced relative to the synthesis by decarboxylation of phosphatidylserine.  相似文献   

15.
Neurite elongation involves the expansion of the plasma membrane and phospholipid synthesis. We investigated membrane phosphatidylethanolamine (PE) biosynthesis in PC12 cells during neurite outgrowth induced by nerve growth factor (NGF). When PE was prelabeled with [3H]ethanolamine and the radioactivity was chased by incubation with 1 mM unlabeled ethanolamine, the radioactivity of [3H]PE steadily declined and [3H]ethanolamine was released into the medium in NGF-treated cells during neurite outgrowth; in the absence of unlabeled ethanolamine, the radioactivity of [3H]PE remained relatively constant for at least 24 hr. In undifferentiated cells but not in NGF-treated cells, [3H]phosphoethanolamine accumulated in significant amounts during pulse labeling, and was converted partly to PE but largely released into the medium irrespective of incubation with unlabeled ethanolamine. The decline in the radioactivity of [3H]PE and release of [3H]ethanolamine following incubation with unlabeled ethanolamine were also observed in undifferentiated cells. Thus, the ethanolamine moiety of PE derived from ethanolamine is actively recycled in both differentiated and undifferentiated cells. When PE was derived from [3H]serine through phosphatidylserine (PS) decarboxylation, the decrease in radioactivity of [3H]PE and release of [3H]ethanolamine into the medium following incubation with unlabeled ethanolamine were observed only in NGF-treated cells, but not in undifferentiated cells, indicating that the ethanolamine moiety of PE derived from PS is actively recycled only in the cells undergoing NGF-induced neuritogenesis. Thus, in PC12 cells, the ethanolamine moiety of PE derived from PS is regulated differently from that of PE derived from ethanolamine.  相似文献   

16.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

17.
In the preceding paper, we reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine (Kuge, O., Nishijima, M., and Akamatsu, Y. (1986) J. Biol. Chem. 261, 5790-5794). In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with [32P]phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with [32P]phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.  相似文献   

18.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

19.
Pulse-chase experiments in Bacillus megaterium ATCC 14581 with [U-14C]palmitate, L-[U-14C]serine, and [U-14C]glycerol showed that a large pool of phosphatidylglycerol (PG) which exhibited rapid turnover in the phosphate moiety (PGt) underwent very rapid interconversion with the large diglyceride (DG) pool. Kinetics of DG labeling indicated that the fatty acyl and diacylated glycerol moieties of PGt were also utilized as precursors for net DG formation. The [U-14C]glycerol pulse-chase results also confirmed the presence of a second, metabolically stable pool of PG (PGs), which was deduced from [32P]phosphate studies. The other major phospholipid, phosphatidylethanolamine (PE), exhibited pronounced lags relative to PG and DG in 14C-fatty acid, [14C]glycerol, and [32P]phosphate incorporation, but not for incorporation of L-[U-14C]serine into the ethanolamine group of PE or into the serine moiety of the small phosphatidylserine (PS) pool. Furthermore, initial rates of L-[U-14C]serine incorporation into the serine and ethanolamine moieties of PS and PE were unaffected by cerulenin. The results provided compelling in vivo evidence that de novo PGt, PS, and PE synthesis in this organism proceed for the most part sequentially in the order PGt yields PS yields PE rather than via branching pathways from a common intermediate and that the phosphatidyl moiety in PS and PE is derived largely from the corresponding moiety in PGt, whereas the DG pool indirectly provides an additional source for this conversion by way of the facile PGt in equilibrium or formed from DG interconversion.  相似文献   

20.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号