首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The structure and function of the hippocampus, a brain region critical for learning and memory, is impaired by obesity and hyperlipidemia. Peripheral cholesterol and sphingolipids increase progressively with aging and are associated with a range of age-related diseases. However, the mechanisms linking peripheral cholesterol metabolism to hippocampal neuroplasticity remain poorly understood. To determine whether diets that elevate serum cholesterol influence lipid metabolism in the hippocampus, we maintained rats on a diet with high amounts of saturated fat and simple sugars for 3 months and then analyzed hippocampal lipid species using tandem mass spectrometry. The high fat diet was associated with increased serum and liver cholesterol and triglyceride levels, and also promoted cholesterol accumulation in the hippocampus. Increases in hippocampal cholesterol were associated with elevated galactosyl ceramide and sphingomyelin. To determine whether changes in lipid composition exerted biological effects, we measured levels of the lipid peroxidation products 4-hydroxynonenal-lysine and 4-hydroxynonenal-histidine; both were increased locally in the hippocampus, indicative of cell membrane-associated oxidative stress. Taken together, these observations support the existence of a potentially pathogenic relationship between dietary fat intake, peripheral cholesterol and triglyceride levels, brain cell sphingolipid metabolism, and oxidative stress.  相似文献   

2.
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.  相似文献   

3.
Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT.  相似文献   

4.
Abnormalities in oxidative metabolism and inflammation accompany many neurodegenerative diseases. Thiamine deficiency (TD) is an animal model in which chronic oxidative stress and inflammation lead to selective neuronal death, whereas other cell types show an inflammatory response. Therefore, the current studies determined the response of different brain cell types to TD and/or inflammation in vitro and tested whether their responses reflect inherent properties of the cells. The cells that have been implicated in TD-induced neurotoxicity, including neurons, microglia, astrocytes, and brain endothelial cells, as well as neuroblastoma and BV-2 microglial cell lines, were cultured in either thiamine-depleted media or in normal culture media with amprolium, a thiamine transport inhibitor. The activity levels of a key mitochondrial enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), were uniquely distributed among different cell types: The highest activity was in the endothelial cells, and the lowest was in primary microglia and neurons. The unique distribution of the activity did not account for the selective response to TD. TD slightly inhibited general cellular dehydrogenases in all cell types, whereas it significantly reduced the activity of KGDHC exclusively in primary neurons and neuroblastoma cells. Among the cell types tested, only in neurons did TD induce apoptosis and cause the accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation product. On the other hand, chronic lipopolysaccharide-induced inflammation significantly inhibited cellular dehydrogenase and KGDHC activities in microglia and astrocytes but not in neurons or endothelial cells. The results demonstrate that the selective cell changes during TD in vivo reflect inherent properties of the different brain cell types.  相似文献   

5.
Sphingomyelinase (SMase) and ceramidase (CDase) activities participate in sphingomyelin (SM) metabolism and have a role in the signal transduction of a variety of ligands. In this study evidence is presented that caveolin-enriched light membranes (CELMs) of murine endothelial cells, characterized by high SM, ceramide (Cer) and cholesterol content, bear acid and neutral SMase as well as neutral CDase activities. Localization of neutral CDase in CELMs was confirmed by Western analysis. Notably, cell treatment with cyclodextrin, which depleted cell cholesterol, did not affect acid or neutral SMase activities but significantly enhanced neutral CDase activity in CELMs, indicating a negative role for cholesterol in CDase regulation. These findings suggest that neutral CDase is implicated, together with SMase activities, in the control of caveolar Cer content that may be critical for caveola dynamics.  相似文献   

6.
7.
Numerous studies have revealed that a part of the cellular response to chronic oxidative stress involves increased antioxidant capacity. However, another defense mechanism that has received less attention is DNA repair. Because of the important homeostatic role of mitochondria and the exquisite sensitivity of mitochondrial DNA (mtDNA) to oxidative damage, we hypothesized that mtDNA repair plays an important role in the protection against oxidative stress. To test this hypothesis mtDNA damage and repair was evaluated in normal HA1 Chinese hamster fibroblasts and oxidative stress-resistant variants isolated following chronic exposure to H2O2 or 95% O2. Reactive oxygen species were generated enzymatically using xanthine oxidase and hypoxanthine. When treated with xanthine oxidase reduced levels of initial mtDNA damage and enhanced mtDNA repair were observed in the cells from the oxidative stress-resistant variants, relative to the parental cell line. This enhanced mtDNA repair correlated with an increase in mitochondrial apurinic/apyrimidinic endonuclease activity in both H2O2- and O2-resistant HA1 variants. This is the first report showing enhanced mtDNA repair in the cellular response to chronic oxidative stress. These results provide further evidence for the crucial role that mtDNA repair pathways play in protecting cells against the deleterious effects of reactive oxygen species.  相似文献   

8.
Neutral sphingomyelinases (SMases) are involved in the induction of ceramide-mediated proapoptotic signaling under heat stress conditions. Although ceramide is an important mediator of apoptosis, the neutral SMase that is activated under heat stress has not been identified. In this study, we cloned an Mg(2+)-dependent neutral SMase from a zebrafish embryonic cell cDNA library using an Escherichia coli expression-cloning vector. Screening of the clones using an SMase activity assay with C(6)-7-nitro-2-1,3-benzoxadiazol-4-yl-sphingomyelin as the substrate resulted in the isolation of one neutral SMase cDNA clone. This cDNA encoded a polypeptide of 420 amino acids (putative molecular weight: 46,900) containing two predicted transmembrane domains in its C-terminal region. The cloned neutral SMase 1 acted as a mediator of stress-induced apoptosis. Bacterially expressed recombinant neutral SMase 1 hydrolyzed [choline-methyl-(14)C]sphingomyelin optimally at pH 7.5 in the presence of an Mg(2+) ion. In zebrafish embryonic cells, the endogenous SMase enzyme was localized in the microsomal fraction. In FLAG-tagged SMase-overexpressing cells, neutral SMase 1 colocalized with a Golgi marker in a cytochemical analysis. Inactivation of the enzyme by an antisense phosphorothioate oligonucleotide repressed the induction of ceramide generation, caspase-3 activation, and apoptotic cell death by heat stress. Thus, neutral SMase 1 participates in an inducible ceramide-mediating, proapoptotic signaling pathway that operates in heat-induced apoptosis in zebrafish embryonic cells.  相似文献   

9.
Oxygen–glucose deprivation (OGD) in brain cells increases extracellular glutamate concentration leading to excitotoxicity. Glutamate uptake from the synaptic cleft is carried out by glutamate transporters, which are likely to be modulated by oxidative stress. Therefore, oxidative stress is associated with reduced activity of glutamate transporters and glutamine synthetase, thus increasing extracellular glutamate levels that may aggravate damage to brain cells. Atorvastatin, a cholesterol-lowering agent, has been shown to exert neuroprotective effects. The aim of this study was to investigate if in vivo atorvastatin treatment would have protective effects against hippocampal slices subjected to OGD, ex vivo. Atorvastatin pretreatment promoted increased cell viability after OGD and reoxygenation of hippocampal slices. Atorvastatin-induced neuroprotection may be related to diminished oxidative stress, since it prevented OGD-induced decrement of non-proteic thiols (NPSH) levels and increase in the production of reactive oxygen species (ROS). Atorvastatin pretreatment also prevented the OGD-induced decrease in glutamate uptake and glutamine synthetase activity, although it had no effect on OGD-induced excitatory aminoacids release. Addition of cholesterol before OGD and reoxygenation, abolished the protective effect of atorvastatin on cellular viability as well as on glutamate uptake and glutamine synthetase activity. Therefore, atorvastatin is capable of preventing OGD-induced cell death, an effect achieved due to modulation of glutamate uptake and glutamine synthetase activity, and associated with diminished oxidative stress. Additionally, atorvastatin effects were dependent on its action on cholesterol synthesis inhibition. Thus, atorvastatin might be a useful strategy in the prevention of glutamate exitotoxicity involved in brain injuries such as vascular disorders.  相似文献   

10.
11.
Populations adapted to locally stressful environmental conditions are predicted to carry costs in performance and fitness, particularly when compared to non-stress adapted populations in the absence of stress. However, empirical observations found fitness costs incurred by stress-resistant genotypes are often ambiguous or absent. Compensatory evolution may purge genotypes with relatively high costs over time, resulting in the recovery of fitness in a stress-resistant population. We assessed the magnitude of adaptation costs over time to test for a reduction in negative genetic effects by compiling published data on measures of fitness from plant populations inhabiting mine tailings and populations adapted to herbicides. Heavy metal contaminated sites represent a stress that is immediate and unchanging; herbicides represent a stress that changes over time with dosage or the type of herbicide as treated populations become more resistant. To quantify costs, for each comparison we recorded the performance of plants from stress and non-stress environments grown under benign conditions. Time since the initiation of the stress was determined to test whether costs change over time. Costs were overall constant through time. The magnitude of cost were consistent with trade-offs for heavy metal resistance and certain herbicide mechanisms (triazine and resistance via P450 enzyme), but not for other herbicides where costs were inconsistent and appear to be low if not absent. Superior stress-resistant populations with higher performance than non-stress populations were found from both herbicide and metal stress, with some extreme cases early from time since initiation. There was an increasing benefit to cost ratio over time for herbicide resistant populations. We found that adaptation to stressful environments is generally costly except in herbicide resistance, and that costs are not diminished over time. Stress-resistant populations without costs also arise infrequently, though these populations may often be restricted from spreading.  相似文献   

12.
Stressful experiences and genetic predisposition have both independent and interactive contributions to the development of depression. The serotonergic system is involved in the development of depression, and administration of neurotoxins that specifically compromise its function leads to symptoms of affective disorders. In order to find out which brain regions are most affected by stress, partial serotonergic denervation and their combination, chronic variable stress (CVS) was applied for 3 week. Serotonergic denervation was elicited by parachloroampetamine (PCA, 2mg/kg), and cytochrome oxidase histochemistry was used to characterize the long-term levels of neuronal oxidative energy metabolism. PCA pretreatment blocked the increase in oxidative activity in chronically stressed rats in medial preoptic area, cortical and medial amygdala. PCA raised oxidative activity compared to control animals in substantia nigra and ventrolateral division of laterodorsal thalamus. CVS reduced the oxidative activity induced by PCA in suprachiasmatic hypothalamus, anteroventral thalamus, hippocampal CA3 region and cortical amygdala. In the dorsal part of the anterior olfactory nucleus chronic stress blocked the decrease in oxidative activity evoked by PCA. Conclusively, partial serotonergic denervation with PCA and chronic variable stress both had independent effects on long-term energy metabolism in several rat brain structures, tending to increase it. However, partial serotonergic denervation by parachloroampetamine and chronic variable stress had in many brain regions an interactive effect on energy metabolism, each factor reducing the effect of the other, which could reflect the weakening of adaptive mechanisms.  相似文献   

13.
Stroke is the most common cause of motor disabilities and is a major cause of mortality worldwide. Adult stem cells have been shown to be effective against neuronal degeneration through mechanisms that include both the recovery of neurotransmitter activity and a decrease in apoptosis and oxidative stress. We chose the lineage stroke-prone spontaneously hypertensive rat (SHRSP) as a model for stem cell therapy. SHRSP rats can develop such severe hypertension that they generally suffer a stroke at approximately 1 year of age. The aim of this study was to evaluate whether mesenchymal stem cells (MSCs) decrease apoptotic death and oxidative stress in existing SHRSP brain tissue. The results of qRT-PCR assays showed higher levels of the antiapoptotic Bcl-2 gene in the MSC-treated animals, compared with untreated. Our study also showed that superoxide, apoptotic cells, and by-products of lipid peroxidation decreased in MSC-treated SHRSP to levels similar those found in the animal controls, Wistar Kyoto rats. In addition, we saw a repair of morphological damage at the hippocampal region after MSC transplantation. These data suggest that MSCs have neuroprotective and antioxidant potential in stroke-prone spontaneously hypertensive rats.  相似文献   

14.
Abstract: Deposits of amyloid β-peptide (Aβ), reduced glucose uptake into brain cells, oxidative damage to cellular proteins and lipids, and excitotoxic mechanisms have all been suggested to play roles in the neurodegenerative process in Alzheimer's disease. Synapse loss is closely correlated with cognitive impairments in Alzheimer's disease, suggesting that the synapse may be the site at which degenerative mechanisms are initiated and propagated. We report that Aβ causes oxyradical-mediated impairment of glucose transport, glutamate transport, and mitochondrial function in rat neocortical synaptosomes. Aβ induced membrane lipid peroxidation in synaptosomes that occurred within 1 h of exposure; significant decreases in glucose transport occurred within 1 h of exposure to Aβ and decreased further with time. The lipid peroxidation product 4-hydroxynonenal conjugated to synaptosomal proteins and impaired glucose transport; several antioxidants prevented Aβ-induced impairment of glucose transport, indicating that lipid peroxidation was causally linked to this adverse action of Aβ. FeSO4 (an initiator of lipid peroxidation), Aβ, and 4-hydroxynonenal each induced accumulation of mitochondrial reactive oxygen species, caused concentration-dependent decreases in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, and reduced cellular ATP levels significantly. Aβ also impaired glutamate transport, an effect blocked by antioxidants. These data suggest that Aβ induces membrane lipid peroxidation, which results in impairment of the function of membrane glucose and glutamate transporters, altered mitochondrial function, and a deficit in ATP levels; 4-hydroxynonenal appears to be a mediator of these actions of Aβ. These data suggest that oxidative stress occurring at synapses may contribute to the reduced glucose uptake and synaptic degeneration that occurs in Alzheimer's disease patients. They further suggest a sequence of events whereby oxidative stress promotes excitotoxic synaptic degeneration and neuronal cell death in a variety of different neurodegenerative disorders.  相似文献   

15.
To determine whether oxidant-antioxidant balance is altered in chronic renal failure, antioxidant enzymes and lipid peroxide in peripheral blood cells and lipid peroxide in plasma were measured. Nine children and adolescents maintained on hemodialysis (HD), 9 on continuous ambulatory peritoneal dialysis (CAPD), and 14 controls were studied. Lipid peroxide was assayed fluorimetrically as thiobarbituric acid-reactive substances, superoxide dismutases by radioimmunoassays. Both manganese and copper-zinc superoxide dismutases in lymphocytes and monocytes in the HD and CAPD patients, and manganese superoxide dismutase in polymorphs in the HD patients were higher than in the controls. Copper-zinc superoxide dismutase, glutathione peroxidase, and catalase in erythrocytes were unaltered. The lipid peroxide level in plasma in the dialyzed patients was increased, whereas those in polymorphs and lymphocytes were unaltered. Triglyceride and total cholesterol in plasma in the dialyzed patients were also increased. The plasma lipid peroxide in the patients correlated with the triglyceride and total cholesterol level. This is the first study in which manganese superoxide dismutase is measured in nucleated cells of the patients with chronic renal failure. The present results suggest that increased superoxide dismutases protect against oxidative stress induced by chronic renal failure in nucleated cells but in neither erythrocytes nor plasma.  相似文献   

16.
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously, we found that neuroprotective effects of geldanamycin, a benzoquinone ansamycin, in HT22 cells were associated with a down-regulation of c-Raf-1, an upstream activator of the extracellular signal-regulated protein kinases (ERKs). ERK activation, although often attributed strictly to neuronal cell survival and proliferation, can also be associated with neuronal cell death that occurs in response to specific insults. In this report we show that delayed and persistent activation of ERKs is associated with glutamate-induced oxidative toxicity in HT22 cells and immature primary cortical neuron cultures. Furthermore, we find that U0126, a specific inhibitor of the ERK-activating kinase, MEK-1/2, protects both HT22 cells and immature primary cortical neuron cultures from glutamate toxicity. Glutamate-induced ERK activation requires the production of specific arachidonic acid metabolites and appears to be downstream of a burst of reactive oxygen species (ROS) accumulation characteristic of oxidative stress in HT22 cells. However, inhibition of ERK activation reduces glutamate-induced intracellular Ca(2+) accumulation. We hypothesize that the precise kinetics and duration of ERK activation may determine whether downstream targets are mobilized to enhance neuronal cell survival or ensure cellular demise.  相似文献   

17.
Free iron has been assumed to potentiate oxygen toxicity by generating reactive oxygen species (ROS) via the iron-catalyzed Haber-Weiss reaction, leading to oxidative stress. ROS-mediated iron cytotoxicity may trigger apoptotic cell death. In the present study, we used iron treatment of organotypic cultures of hippocampal slices to study potential mechanisms involved in iron-induced neuronal damage. Exposure of mature hippocampal slices to ferrous sulfate resulted in concentration- and time-dependent cell death. After iron treatment, markers of ROS formation and lipid peroxidation, i.e. intensity of dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS), were significantly increased. Levels of cytochrome c were increased while levels of pro-caspase-9 and pro-caspase-3 were decreased in cytosolic fractions of iron-treated hippocampal slice cultures. Treatment of cultured slices with a synthetic catalytic ROS scavenger, EUK-134, provided between 50 and 70% protection against various parameters of cell damage and markers of oxidative stress. In addition, inhibition of caspase-3 activity by Ac-DEVDcho partially protected cells from iron toxicity. The combination of EUK-134 and Ac-DEVDcho resulted in an almost complete blockade of iron-induced damage. These results indicate that iron elicits cellular damage predominantly by oxidative stress, and that ROS-mediated iron toxicity may involve cytochrome c- and caspase-3-dependent apoptotic pathways.  相似文献   

18.
The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress.  相似文献   

19.
It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.  相似文献   

20.
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. The cholesterol concentrations in total homogenate and the lipid rafts from hippocampal neurons are significantly higher than those from cortical neurons. Cholesterol depletion by beta-cyclodextrin markedly enhanced the neurite outgrowth and accelerated the establishment of neuronal polarity in hippocampal neurons, which were similarly observed in nontreated cortical neurons, whereas cholesterol loading had no effects. In contrast, both depletion and loading of cholesterol decreased the neurite outgrowths in cortical neurons. The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号