首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood structure might be altered through the physiological responses to atmospheric carbon dioxide concentration ([CO2]) and nitrogen (N) deposition. We investigated growth, water relations and wood structure of 1-year-old seedlings of two deciduous broad-leaved tree species, Quercus mongolica (oak, a ring-porous species) and Alnus hirsuta (alder, a diffuse-porous species and N2–fixer), grown under a factorial combination of two levels of [CO2] (36 and 72 Pa) and nitrogen supply (N; low and high) for 141 days in phytotron chambers. In oak, there was no significant effect of [CO2] on wood structure, although elevated [CO2] tended to decrease stomatal conductance (g s) and increased water use efficiency regardless of the N treatment. However, high N supply increased root biomass and induced wider earlywood and larger vessels in the secondary xylem in stems, leading to increased hydraulic conductance. In alder, there was significant interactive effect of [CO2] and N on vessel density, and high N supply increased the mean vessel area. Our results suggest that wood structures related to water transport were not markedly altered, although elevated [CO2] induced changes in physiological parameters such as g s and biomass allocation, and that N fertilization had more pronounced effects on non-N2-fixing oak than on N2-fixing alder.  相似文献   

2.
The quantities and spatial distribution of nutrients in savanna ecosystems are affected by many factors, of which fire, herbivory and symbiotic N2-fixation are particularly important. We measured soil nitrogen (N) pools and the relative abundance of N and phosphorus (P) in herbaceous vegetation in five vegetation types in a humid savanna in Tanzania. We also performed a factorial fertilization experiment to investigate which nutrients most limit herbaceous production. N pools in the top 10 cm of soil were low at sites where fires were frequent, and higher in areas with woody legume encroachment, or high herbivore excretion. Biomass production was co-limited by N and P at sites that were frequently burnt or heavily grazed by native herbivores. In contrast, aboveground production was limited by N in areas receiving large amounts of excreta from livestock. N2-fixation by woody legumes did not lead to P-limitation, but did increase the availability of N relative to P. We conclude that the effects of fire, herbivory and N2-fixation upon soil N pools and N:P-stoichiometry in savanna ecosystems are, to a large extent, predictable. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  P.C., H.O.V. and P.E. designed the study and wrote the paper. P.C. and T.K. performed the research and analyzed the data.  相似文献   

3.
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 μmol(quantum) m−2 s−1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.  相似文献   

4.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

5.
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.  相似文献   

6.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

7.
Guo Z  Chen Z  Zhang W  Yu X  Jin M 《Biotechnology letters》2008,30(5):877-883
To develop an integrated process of CO2-fixation and H2 photoproduction by marine green microalga Platymonas subcordiformis, the impact of algal cells grown in CO2-supplemented air bubble column bioreactor was investigated on H2 photoproduction regulated by carbonylcyanide m-chlorophenylhrazone. Highest cell growth (3.85 × 106 cells ml−1), starch content (0.25 ± 0.08 mg per 106 cells) and hydrogen production (50 ± 3 ml l−1) were achieved at 3% CO2-supplemented culture, which are respectively 1.4, 2.1, 1.5-fold of the air-supplemented culture. Improved H2 production correlated well with the increase in starch accumulation. In this process, the algal cells have been recycled for stable H2 production of 40–50 ml l−1 over five cycles.  相似文献   

8.
Acacia mearnsii is an introduced Australian acacia in South Africa and has invaded more than 2.5 million ha, primarily establishing in rangeland and riparian areas. Because acacias have the capability to fix N, A. mearnsii invasions may fundamentally change N dynamics in invaded systems. This study compares biological N2-fixation in the alien invasive A. mearnsii and the native A. caffra growing in a grassland riparian zone in the Komati Gorge Reserve, Mpumalanga, South Africa. A 15N natural abundance field survey suggested that both mature alien and native acacias fix N under current conditions in the riparian zone. Significantly depleted δ15N was observed in both acacias relative to reference species, although variation in δ15N was not correlated with N concentrations. Calculated contributions of N2-fixation (%Ndfa) suggest that alien acacias fix significantly more of their N than native acacias (~75 ± 5% SE and 53 ± 9% SE, respectively). There was a larger variation in δ15N and %Ndfa in the native acacia, suggesting relatively high plasticity in its N2-fixation contributions. This plasticity was interpreted as a facultative N2-fixation strategy for the native acacia, while the N2-fixation strategy of the alien acacia remained unclear. Our results emphasize the importance of potentially elevated N inputs through N2-fixation by invasive legumes in invaded landscapes. Furthermore, they suggest that N2-fixation by invasive acacias may not respond to fine-scale patchiness in soil N in the same manner as native acacias, making them potential contributors to N excess in Southern Africa.  相似文献   

9.
Northern peatlands are important stores of carbon and reservoirs of biodiversity that are vulnerable to global change. However, the carbon dynamics of individual peatland plant species is poorly understood, despite the potential for rising atmospheric CO2 to affect the vegetation’s contribution to overall ecosystem carbon function. Here, we examined the effects of 3 years exposure to elevated CO2 (eCO2) on (a) peatland plant community composition and biomass, and (b) plant carbon dynamics and the production of dissolved organic carbon (DOC) using a 13CO2 pulse–chase approach. Results showed that under eCO2, Sphagnum spp. cover declined by 39% (P < 0.05) and Juncus effusus L. cover increased by 40% (P < 0.001). There was a concurrent increase in above- and belowground plant biomass of 115% (P < 0.01) and 96% (P < 0.01), respectively. Vascular species assimilated and turned over more 13CO2-derived carbon than Sphagnum spp. (49% greater turnover of assimilated 13C in J. effusus and F. ovina L. leaf tissues compared with Sphagnum, P < 0.01). Elevated CO2 also produced a 66% rise in DOC concentrations (P < 0.001) and an order of magnitude more ‘new’ exudate 13DOC than control samples (24 h after 13CO2 pulse-labelling 2.5 ± 0.5 and 0.2 ± 0.1% in eCO2 and control leachate, respectively, P < 0.05). We attribute the observed increase in DOC concentrations under eCO2 to the switch from predominantly Sphagnum spp. to vascular species (namely J. effusus), leading to enhanced exudation and decomposition (litter and peat). The potential for reduced peatland carbon accretion, increased DOC exports and positive feedback to climate change are discussed.  相似文献   

10.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

11.
Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.  相似文献   

12.
CO2 efflux from soil and snow surfaces was measured continuously in a Japanese cedar (Cryptomeria japonica D. Don) forest in central Japan using an open dynamic chamber system. The chamber opens and closes automatically and records measurements based on an open-flow dynamic method. Between May and December, mean soil CO2 efflux ranged from 1,529 mg CO2 m−2 h−1 in September to 255 mg CO2 m−2 h−1 in December. The seasonal change in CO2 efflux from the soil paralleled the seasonal pattern of soil temperature. No marked diurnal trends in soil CO2 efflux were observed on days without rainfall, whereas significant pulses in soil CO2 efflux were observed on days with rainfall. In this plantation, soil CO2 efflux frequently responded to rainfall. Measurements of changes from litter-covered soil to snow-covered surfaces revealed that CO2 efflux decreased from values of ca. 250 mg CO2 m−2 h−1 above soil to less than 33 mg CO2 m−2 h−1 above snow. Soil temperature alone explained 66% of the overall variation in soil CO2 efflux, but explained approximately 85% of the variation when data from two anomalous periods were excluded. Moreover, we found a significant correlation between soil CO2 efflux and soil moisture (which explained 44% of the overall variation) using a second-order polynomial function. Our results suggest that the seasonality of CO2 efflux is affected not only by soil temperature and moisture, but also by drying and rewetting cycles and by litterfall pulses.  相似文献   

13.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

14.
Abstract Climate change is predicted to bring about a water level (WL) draw-down in boreal peatlands. This study aimed to assess the effect of WL on the carbon dioxide (CO2) dynamics of a boreal oligotrophic fen ecosystem and its components; Sphagnum mosses, sedges, dwarf shrubs and the underlying peat. We measured CO2 exchange with closed chambers during four growing seasons in a study site that comprised different vegetation treatments. WL gradient in the site was broadened by surrounding half of the site with a shallow ditch that lowered the WL by 10–25 cm. We modeled gross photosynthesis (P G) and ecosystem respiration (R ECO) and simulated the CO2 exchange in three WL conditions: prevailing and WL draw-down scenarios of 14 and 22 cm. WL draw-down both reduced the P G and increased the R ECO, thus leading to a smaller net CO2 uptake in the ecosystem. Of the different components, Sphagnum mosses were most sensitive to WL draw-down and their physiological activities almost ceased. Vascular plant CO2 exchange, en bloc, hardly changed but whereas sedges contributed twice as much to the CO2 exchange as shrubs in the prevailing conditions, the situation was reversed in the WL draw-down scenarios. Peat respiration was the biggest component in R ECO in all WL conditions and the increase in R ECO following the WL draw-down was due to the increase in peat respiration. The results imply that functional diversity buffers the ecosystem against environmental variability and that in the long term, WL draw-down changes the vegetation composition of boreal fens.  相似文献   

15.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions.  相似文献   

16.
The symbiotic biological N2fixation by Acacia senegal was estimated using the 15N natural abundance (δ 15N) procedure on eight provenances collected from different environments and soil types grown in a clay soil in the Blue Nile region, Sudan. Balanites aegyptiaca (a non-legume) was used as a non-N2-fixing reference plant to allow 15N-based estimates of the proportion of the Acacia N derived from atmospheric N2 (Ndfa) to be calculated. Results show variation in leaf δ 15N between A. senegal and the reference plant and among years. The relative δ 15N values (‰) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. Provenances originally collected from clay soils fixed little N in the first year, but the amount fixed increased as the trees aged. All provenances showed a decrease in δ 15N with age. The Ndfa varied between 24% (Mazmoom provenance) and 61% (Rahad provenance) 4 years after planting. There was no significant difference in δ 15N between provenance groups based on soil type or rainfall at original growing site. The amount of Ndfa increased significantly with age in all provenances. The above-ground contribution of fixed N to foliage growth in a 4-year-old A. senegal was highest in the Rahad sand–soil provenance (46.7 kg N ha−1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha−1). Our study represents the first use of the δ 15N method for estimating the N input by A. senegal to the clay plain soils of the gum belt in the Sudan.  相似文献   

17.
Previous research has confirmed that cobalt ion and dimethylbenzimidazole (DMBI) are the precursors of vitamin B12 biosynthesis, and porphobilinogen synthase (PBG synthase) is a zinc-requiring enzyme. In this paper, the effects of Zn2+, Co2+ and DMBI on vitamin B12 production by Pseudomonas denitrificans in shake flasks were studied. Present experimental results demonstrated that the addition of the above mentioned three components to the fermentation medium could significantly stimulate the biosynthesis of vitamin B12. The concentrations of zinc sulphate, cobaltous chloride and DMBI in the fermentation medium were further optimized with rotatable orthogonal central composite design and statistical analysis by Data Processing System (DPS) software. As a result, vitamin B12 production was increased from 69.36 ± 0.66 to 78.23 ± 0.92 μg/ml.  相似文献   

18.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

19.
Simultaneous measurements of chlorophyll (Chl) fluorescence and CO2 assimilation (A) in Vicia faba leaves were taken during the first weeks of growth to evaluate the protective effect of 24-epibrassinolide (EBR) against damage caused by the application of the herbicide terbutryn (Terb) at pre-emergence. V. faba seeds were incubated for 24 h in EBR solutions (2 × 10−6 or 2 × 10−5 mM) and immediately sown. Terb was applied at recommended doses (1.47 or 1.96 kg ha−1) at pre-emergence. The highest dose of Terb strongly decreased CO2 assimilation, the maximum quantum yield of PSII photochemistry in the dark-adapted state (F V/F M), the nonphotochemical quenching (NPQ), and the effective quantum yield (ΔF/FM) during the first 3–4 weeks after plant emergence. Moreover, Terb increased the basal quantum yield of nonphotochemical processes (F 0/F M), the degree of reaction center closure (1 − q p), and the fraction of light absorbed in PSII antennae that was dissipated via thermal energy dissipation in the antennae (1 − FV/FM). The herbicide also significantly reduced plant growth at the end of the experiment as well as plant length, dry weight, and number of leaves. The application of EBR to V. faba seeds before sowing strongly diminished the effect of Terb on fluorescence parameters and CO2 assimilation, which recovered 13 days after plant emergence and showed values similar to those of control plants. The protective effect of EBR on CO2 assimilation was detected at a photosynthetic photon flux density (PFD) of 650 μmol m−2 s−1 and the effect on ΔF/FM and photosynthetic electron transport (J) was detected under actinic lightings up to 1750 μmol m−2 s−1. The highest dose of EBR also counteracted the decrease in plant growth caused by Terb, and plants registered the same growth values as controls.  相似文献   

20.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号