首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tuning of the outer hair cell motor by membrane cholesterol   总被引:2,自引:0,他引:2  
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.  相似文献   

2.
The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.  相似文献   

3.
Prestin, a member of the solute carrier family 26, is expressed in the basolateral membrane of outer hair cells. This protein provides the molecular basis for outer hair cell somatic electromotility, which is crucial for the frequency selectivity and sensitivity of mammalian hearing. It has long been known that there are abundantly expressed approximately 11-nM protein particles present in the basolateral membrane. These particles were hypothesized to be the motor proteins that drive electromotility. Because the calculated size of a prestin monomer is too small to form an approximately 11-nM particle, the possibility of prestin oligomerization was examined. We investigated possible quaternary structures of prestin by lithium dodecyl sulfate-PAGE, perfluoro-octanoate-PAGE, a membrane-based yeast two-hybrid system, and chemical cross-linking experiments. Prestin, obtained from different host or native cells, is resistant to dissociation by lithium dodecyl sulfate and behaves as a stable oligomer on lithium dodecyl sulfate-PAGE. In the membrane-based yeast two-hybrid system, homo-oligomeric interactions between prestin-bait/prestin-prey suggest that prestin molecules can associate with each other. Chemical cross-linking experiments, perfluoro-octanoate-PAGE/Western blot, and affinity purification experiments all indicate that prestin exists as a higher order oligomer, such as a tetramer, in prestin-expressing yeast, mammalian cell lines and native outer hair cells. Our data from experiments using hydrophobic and hydrophilic reducing reagents suggest that the prestin dimer is connected by a disulfide bond embedded in the prestin hydrophobic core. This stable dimer may act as the building block for producing the higher order oligomers that form the approximately 11-nM particles in the outer hair cell's basolateral membrane.  相似文献   

4.
Iwasa KH 《Biophysical journal》2001,81(5):2495-2506
Recent studies have revealed that voltage-dependent length changes of the outer hair cell are based on charge transfer across the membrane. Such a motility can be explained by an "area motor" model, which assumes two states in the motor and that conformational transitions involve transfer of motor charge across the membrane and mechanical displacements of the membrane. Here it is shown that the area motor is piezoelectric and that the hair cell that incorporates such a motor in its lateral membrane is also piezoelectric. Distinctive features of the outer hair cell are its exceptionally large piezoelectric coefficient, which exceeds the best known piezoelectric material by four orders of magnitude, and its prominent nonlinearity due to the discreteness of motor states.  相似文献   

5.
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker–Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage- and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to −90° as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein.  相似文献   

6.
Prestin was found in the membrane of outer hair cells (OHCs) located in the cochlea of the mammalian inner ear. These cells convert changes in the membrane potential into dimensional changes and (if constrained) to an active electromechanical force. The OHCs provide the ear with the mechanism of amplification and frequency selectivity that is effective up to tens of kHz. Prestin is a crucial part of the motor complex driving OHCs. Other cells transfected with prestin acquire electromechanical properties similar to those in the native cell. While the mechanism of prestin has yet to be fully understood, the charge transfer is its critical component. Here we investigate the effect of the mechanics of the surrounding membrane on electric charge transfer by prestin. We simulate changes in the membrane mechanics via the corresponding changes in the free energy of the prestin system. The free energy gradient enters a Fokker-Planck equation that describes charge transfer in our model. We analyze the effects of changes in the membrane tension and membrane elastic moduli. In the case of OHC, we simulate changes in the longitudinal and/or circumferential stiffness of the cell’s orthotropic composite membrane. In the case of cells transfected with prestin, we vary the membrane areal modulus. As a result, we show the effects of the membrane mechanics on the probabilistic characteristics of prestin-associated charge transfer for both stationary and high-frequency conditions. We compare our computational results with the available experimental data and find good agreement with the experiment.  相似文献   

7.
Roy S  Brownell WE  Spector AA 《PloS one》2012,7(5):e37667
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.  相似文献   

8.
Prestin is the membrane protein in outer hair cells that harnesses electrical energy by changing its membrane area in response to changes in the membrane potential. To examine the effect of membrane thickness on this protein, phosphatidylcholine (PC) with various acyl-chain lengths were incorporated into the plasma membrane by using γ-cyclodextrin. Incorporation of short chain PCs increased the linear capacitance and positively shifted the voltage dependence of prestin, up to 120 mV, in cultured cells. PCs with long acyl chains had the opposite effects. Because the linear capacitance is inversely related to the membrane thickness, these voltage shifts are attributable to membrane thickness. The corresponding voltage shifts of electromotility were observed in outer hair cells. These results demonstrate that electromotility is extremely sensitive to the thickness of the plasma membrane, presumably involving hydrophobic mismatch. These observations indicate that the extended state of the motor molecule, which is associated with the elongation of outer hair cells, has a conformation with a shorter hydrophobic height in the lipid bilayer.  相似文献   

9.
How proteins evolve new functionality is an important question in biology; prestin (SLC26A5) is a case in point. Prestin drives outer hair cell somatic motility and amplifies mechanical vibrations in the mammalian cochlea. The motility of mammalian prestin is analogous to piezoelectricity, in which charge transfer is coupled to changes in membrane area occupied by the protein. Intriguingly, nonmammalian prestin orthologs function as anion exchangers but are apparently nonmotile. We previously found that mammalian prestin is sensitive to membrane thickness, suggesting that prestin's extended conformation has a thinner hydrophobic height in the lipid bilayer. Because prestin-based motility is a mammalian specialization, we initially hypothesized that nonmotile prestin orthologs, while functioning as anion transporters, should be much less sensitive to membrane thickness. We found the exact opposite to be true. Chicken prestin was the most sensitive to thickness changes, displaying the largest shift in voltage dependence. Platypus prestin displayed an intermediate response to membrane thickness and gerbil prestin was the least sensitive. To explain these observations, we present a theory where force production, rather than displacement, was selected for the evolution of prestin as a piezoelectric membrane motor.  相似文献   

10.
Prestin, a transmembrane protein found in the outer hair cells of the cochlea, represents a new type of molecular motor, which is likely to be of great interest to molecular cell biologists. In contrast to enzymatic-activity-based motors, prestin is a direct voltage-to-force converter, which uses cytoplasmic anions as extrinsic voltage sensors and can operate at microsecond rates. As prestin mediates changes in outer hair cell length in response to membrane potential variations, it might be responsible for sound amplification in the mammalian hearing organ.  相似文献   

11.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.  相似文献   

12.
Membrane composition modulates prestin-associated charge movement   总被引:1,自引:0,他引:1  
The lateral membrane of the cochlear outer hair cell (OHC) is the site of a membrane-based motor that powers OHC electromotility, enabling amplification and fine-tuning of auditory signals. The OHC membrane protein prestin plays a central role in this process. We have previously shown that membrane cholesterol modulates the peak voltage of prestin-associated nonlinear capacitance in vivo and in vitro. The present study explores the effects of membrane cholesterol and docosahexaenoic acid content on the peak and magnitude of prestin-associated charge movement in a human embryonic kidney (HEK 293) cell model. Increasing membrane cholesterol results in a hyperpolarizing shift in the peak voltage of the nonlinear capacitance (Vpkc) and a decrease in the total charge movement. Both measures depend linearly on membrane cholesterol concentration. Incubation of cholesterol-loaded cells in cholesterol-free media partially restores the Vpkc toward normal values but does not have a compensatory effect on the total charge movement. Decreasing membrane cholesterol results in a depolarizing shift in Vpkc that is restored toward normal values upon incubation in cholesterol-free media. However, cholesterol depletion does not alter the magnitude of charge movement. In contrast, increasing membrane docosahexaenoic acid results in a hyperpolarizing shift in Vpkc that is accompanied by an increase in total charge movement. Our results quantify the relation between membrane cholesterol concentration and prestin-associated charge movement and enhance our understanding of how membrane composition modulates prestin function.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.  相似文献   

14.
It has been shown that the membrane motor in the outer hair cell is driven by the membrane potential. Here we examine whether the motility satisfies the reciprocal relationship, the characteristic of piezoelectricity, by measuring charge displacement induced by stretching the cell with known force. The efficiency of inducing charge displacement was membrane potential dependent. The maximum efficiency of inducing charge displacement by force was approximately 20 fC/nN for 50-microm-long lateral membrane. The efficiency per cell stretching was 0.1 pC/microm. We found that these values are consistent with the reciprocal relationship based on the voltage sensitivity of approximately 20 nm/mV for 50-microm-long cell and force production of 0.1 nN/mV by the cell. We can thus conclude that the membrane motor in the outer hair cell satisfies a necessary condition for piezoelectricity and that the hair cell's piezoelectric coefficient of 20 fC/nN is four orders of magnitude greater than the best man-made material.  相似文献   

15.
Outer hair cells from the mamma*lian cochlea are mechanically active cells that rely on charged voltage sensors within their lateral plasma membrane to gate the integral membrane motor protein, prestin, into one of two area states. Here we use protein and lipid reactive reagents to probe the influence of these bilayer components on motor-induced nonlinear membrane capacitance. Of the protein-reactive reagents tested, cross-linking and sulfhydryl reagents were most effective in altering steady state and time-varying motor activity. Of the lipid-altering agents, chloroform and HePC were most effective. Chloroform, in particular, drastically modified the susceptibility of the motor to prior voltage (initial conditions). Our data suggest that outer hair cell motor activity derives substantially from interactions with its lipid environment.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

16.
Pendrin and prestin both belong to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Pendrin (SLC26A4) is a chloride-iodide transporter that is found at the luminal membrane of follicular cells in the thyroid gland as well as in the endolymphatic duct and sac of the inner ear, whereas prestin (SLC26A5) is expressed in the plasma membrane of cochlear outer hair cells and functions as a unique voltage-dependent motor. We recently identified a motif that is critical for the motor function of prestin. We questioned whether it was possible to create a chimeric pendrin protein with motor capability by integrating this motility motif from prestin. The chimeric pendrin was constructed by substituting residues 160-179 in human pendrin with residues 156-169 from gerbil prestin. Non-linear capacitance and somatic motility, two hallmarks representing prestin function, were measured from chimeric pendrin-transfected human embryonic kidney 293 cells using the voltage clamp technique and photodiode-based displacement measurement system. We showed that this 14-amino acid substitution from prestin was able to confer pendrin with voltage-dependent motor capability despite the amino acid sequence disparity between pendrin and prestin. The molecular mechanism that facilitates motor function appeared to be the same as prestin because the motor activity depended on the concentration of intracellular chloride and was blocked by salicylate treatment. Radioisotope-labeled formate uptake measurements showed that the chimeric pendrin protein retained the capability to transport formate, suggesting that the gain of motor function was not at the expense of its inherent transport capability. Thus, the engineered pendrin was capable of both transporting anions and generating force.  相似文献   

17.
Prestin is a voltage-dependent membrane-spanning motor protein that confers electromotility on mammalian cochlear outer hair cells, which is essential for normal hearing of mammals. Voltage-induced charge movement in the prestin molecule is converted into mechanical work; however, little is known about the molecular mechanism of this process. For understanding the electromechanical coupling mechanism of prestin, we simultaneously measured voltage-dependent charge movement and electromotility under conditions in which the magnitudes of both charge movement and electromotility are gradually manipulated by the prestin inhibitor, salicylate. We show that the observed relationships of the charge movement and the physical displacement (q-d relations) are well represented by a three-state Boltzmann model but not by a two-state model or its previously proposed variant. Here, we suggest a molecular mechanism of prestin with at least two voltage-dependent conformational transition steps having distinct electromechanical coupling efficiencies.  相似文献   

18.
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the outer hair cell (OHC) lateral membrane is a prime candidate for the cochlear power amplifier [3]. The other contender for this role is the ubiquitous calcium-mediated motility of the hair cell stereocilia, which has been demonstrated in vitro and is based on fast adaptation of the mechanoelectrical transduction channels [4, 5]. Absence of prestin [6] from OHCs results in a 40-60 dB reduction in cochlear neural sensitivity [7]. Here we show that sound-evoked BM vibrations in the high-frequency region of prestin(-/-) mice cochleae are, surprisingly, as sensitive as those of their prestin(+/+) siblings. The BM vibrations of prestin(-/-) mice are, however, broadly tuned to a frequency approximately a half octave below the CF of prestin(+/+) mice at similar BM locations. The peak sensitivity of prestin(+/+) BM tuning curves matches the neural thresholds. In contrast, prestin(-/-) BM tuning curves at their best frequency are >50 dB more sensitive than the neural responses. We propose that the absence of prestin from OHCs, and consequent reduction in stiffness of the cochlea partition, changes the passive impedance of the BM at high frequencies, including the CF. We conclude that prestin influences the cochlear partition's dynamic properties that permit transmission of its vibrations into neural excitation. Prestin is crucial for defining sharp and sensitive cochlear frequency tuning by reducing the sensitivity of the low-frequency tail of the tuning curve, although this necessitates a cochlear amplifier to determine the narrowly tuned tip.  相似文献   

19.
Shun Kumano 《FEBS letters》2010,584(13):2872-2876
Prestin is the motor protein of cochlear outer hair cells and is essential for mammalian hearing. The present study aimed to clarify the structure of prestin by atomic force microscopy (AFM). Prestin was purified from Chinese hamster ovary cells which had been modified to stably express prestin, and then reconstituted into an artificial lipid bilayer. Immunofluorescence staining with anti-prestin antibody showed that the cytoplasmic side of prestin was possibly face up in the reconstituted lipid bilayer. AFM observation indicated that the cytoplasmic surface of prestin was ring-like with a diameter of about 11 nm.  相似文献   

20.
By using an analogy between the magnetization of a paramagnetic material in an external magnetic field and the electric polarization of the lateral wall of outer hair cells in response to the transmembrane potential, we show that, based on experimental data on the charge transfer across the membrane, it is impossible to make a statement about the number of possible conformational states of the motor molecule, prestin. Although the choice of model affects the values of derived parameters, such as total charge and motor charge, this is frequently overlooked in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号