首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of histamine on bronchial artery blood flow and bronchomotor tone   总被引:5,自引:0,他引:5  
The effects of aerosolized 5% histamine (10 breaths) on bronchial artery blood flow (Qbr), airflow resistance (RL), and pulmonary and systemic hemodynamics were studied in mechanically ventilated sheep anesthetized with pentobarbital sodium. Histamine increased mean Qbr and RL to 252 +/- 45 and 337 +/- 53% of base line, respectively. This effect was significantly different from base line for 30 min after challenge. The histamine-induced increase in RL was blocked by pretreatment with the histamine H1 receptor antagonist, chlorpheniramine, whereas the histamine-induced elevation in Qbr was prevented by the H2 antagonist, metiamide. Both responses were blocked only when both antagonists were present. Changes in Qbr were not directly associated with alterations in systemic and pulmonary hemodynamics or arterial blood gas composition. In vitro histamine caused a dose-dependent contraction of ovine bronchial artery strips that was prevented by H1 antagonist. The H2 agonist, impromidine, caused relaxation of precontracted arterial strips and was more potent and efficacious than histamine, whereas H1 agonists failed to elicit a relaxant response. Thus these findings indicate that histamine aerosol induces a vasodilation in the bronchial vascular bed; histamine has a direct effect on Qbr that is independent of alterations in RL, systemic and pulmonary hemodynamics, or arterial blood gas composition; and, histamine-induced bronchoconstriction is mediated predominantly by H1-receptors, whereas increased Qbr is controlled predominantly by H2-receptors, probably located in resistance vessels. This local effect of histamine on Qbr may have important implications in the pathophysiology of bronchial asthma and pulmonary edema.  相似文献   

2.
Immunologic degranulation of airway mast cells after antigen inhalation produces early and late airway obstructions in allergic sheep. In this study we determined whether nonimmunologic degranulation of airway mast cells by inhalation of compound 48/80 had similar effects. In five sheep, pulmonary flow resistance (RL), thoracic gas volume (Vtg), and arterial O2 tension (Pao2) were determined prior to and at predetermined times after inhalation of 48/80 aerosol. Immediately after challenge mean specific lung resistance (sRL = RL X Vtg) increased by 259% and mean Pao2 decreased by 29%. All values returned to normal by 3 h. By 5-h postchallenge sRL again increased significantly; this second increase in sRL (92% above base line) was maximal at 7 h and was accompanied by a 17% drop in Pao2. In these same sheep inhalation of Ascaris suum antigen produced comparable early changes in sRL, but the onset of the late response was somewhat delayed and more pronounced. In a second group of sheep (n = 5), pretreatment with the mast cell stabilizer cromolyn sodium prevented both early and late responses by compound 48/80. Pretreatment with the histamine H1-antagonist chlorpheniramine had no significant effect on either response, whereas pretreatment with FPL 55712, an antagonist of slow-reacting substance of anaphylaxis (SRS-A), slightly but not significantly attenuated the early response and completely prevented the late response. We conclude that, like immunologic stimuli, nonimmunologic mast cell degranulation produces early and late bronchial obstructions in allergic sheep; that these responses are mediator dependent; and that while histamine and SRS-A contribute to the early response, it is the early appearance of SRS-A which is an important prerequisite for the late response.  相似文献   

3.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

4.
Late-phase bronchial vascular responses in allergic sheep   总被引:1,自引:0,他引:1  
Sheep were classified on the basis of their airway response to Ascaris suum antigen aerosols as allergic or nonsensitive. Allergic sheep were classed as acute or dual responders. Acute responders had only an immediate increase in mean airflow resistance after antigen, whereas dual responders had an immediate and late-phase (6-8 h after antigen challenge) increase in mean airflow resistance; nonsensitive sheep had minimal airway responses to antigen (less than 30% increase from base line). The sheep were anesthetized 2 wk later and, after a left thoracotomy, were challenged with antigen to determine bronchial vascular responses; bronchial artery blood flow was measured with an electromagnetic flow probe. Airway responses to antigen aerosol challenge were similar in the anesthetized and conscious animals. The mean fall in bronchial vascular resistance (BVR) immediately after antigen challenge was similar in acute and dual responders (41 +/- 7 and 47 +/- 9% of base line, respectively). In dual responders, late-phase airway responses were preceded by a significant increase from base line in Qbr and a fall in bronchovascular resistance (BVR). The mean fall in BVR 6-8 h after antigen challenge in documented dual responders was significantly different from bronchial vascular responses in acute responders (59 +/- 3 vs. 89 +/- 10%, respectively). Sheep without airway responses to A. suum had no significant changes in bronchial hemodynamics or airways mechanics. Late-phase-associated changes in BVR are a specific response to antigen challenge and may be a sensitive index of mediators being released.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ischemic preconditioning (IP) may protect the lung from ischemia-reperfusion (I/R) injury following cardiopulmonary by-pass and lung or heart transplantation. The present study was undertaken to investigate the role of ATP-dependent potassium channels (K(ATP)) in IP in the isolated buffer-perfused rat lung (IBPR) under conditions of elevated pulmonary vasoconstrictor tone (PVT). Since pulmonary arterial perfusion flow and left atrial pressure were constant, changes in pulmonary arterial pressure (PAP) directly reflect changes in pulmonary vascular resistance (PVR). When compared to control value, the pulmonary vasodilator responses to histamine and acetylcholine (ACh) following 2 h of hypothermic ischemia were significantly attenuated, whereas the pulmonary vasodilator response to sodium nitroprusside (SNP) was not altered. IP in the form of two cycles of 5 min of ischemia and reperfusion applied prior to the two-hour interval of ischemia, prevented the decrease in the pulmonary vasodilator responses to histamine and ACh. Pretreatment with glybenclamide (GLB) or HMR-1098, but not 5-hydroxydecanoic acid (5-HD), prior to IP abolished the protective effect of IP. In contrast, GLB or 5-HD did not significantly alter the pulmonary vasodilator response to histamine without IP pretreatment. The present data demonstrate that IP prevents impairment of endothelium-dependent vasodilator responses in the rat pulmonary vascular bed. The present data further suggest that IP may alter the mediation of the pulmonary vasodilator response to histamine and thereby trigger a mechanism dependent on activation of sarcolemmal, and not mitochondrial, K(ATP) channels to preserve endothelial-dependent vasodilator responses and protect against I/R injury in the lung.  相似文献   

6.
We studied the effects of antigen aerosol challenge on the airways of the canine peripheral lung and examined the roles of cyclooxygenase products, histamine, and cholinergic activity in the responses. One-minute deliveries of 1:10,000 or 1:100,000 concentrations of Ascaris suum antigen aerosol through a wedged bronchoscope resulted in mean maximal increases in collateral system resistance (Rcs) of 415 and 177%, respectively, after 4-8 min. Repeated antigen challenge (1:100,000) resulted in significantly decreased responsiveness to antigen after the initial exposure (P less than 0.005). Bronchoalveolar lavage fluid obtained from the isolated, challenged segment had a significant increase in mean (+/- SE) prostaglandin D2 (PGD2) concentration vs. control (222.0 +/- 65.3 vs. 72.7 +/- 19.5 pg/ml; P less than 0.05); histamine concentrations were variable and not significantly different (4.1 +/- 2.6 vs. 1.2 +/- 0.2 ng/ml; P greater than 0.05). In nine experiments, cyclooxygenase inhibition significantly attenuated the antigen-induced increase in Rcs by 53.4% (P less than 0.001), and the concentration of PGD2 in lavage fluid was reduced by 96.0% (P less than 0.01). Blockade of histamine H1-receptors (n = 8) or cholinergic receptors (n = 7) did not significantly affect the airway response (P greater than 0.05). These data indicate that the canine peripheral lung responds in a dose-dependent manner to antigen aerosol challenge and exhibits characteristics of antigen tachyphylaxis. Results also suggest that cyclooxygenase products play a central role in the acute bronchoconstrictive response of the lung periphery.  相似文献   

7.
Inhaled heparin has been shown to inhibit allergic bronchoconstriction in sheep that develop only acute responses to antigen (acute responders) but was ineffective in sheep that develop both acute and late airway responses (LAR) (dual responders). Because the antiallergic activity of heparin is molecular-weight dependent, we hypothesized that heparin-derived oligosaccharides (<2, 500) with potential anti-inflammatory activity may attenuate the LAR in the dual-responder sheep. Specific lung resistance was measured in 24 dual-responder sheep before and serially for 8 h after challenge with Ascaris suum antigen for demonstration of early airway response (EAR) and LAR, without and after treatment with inhaled medium-, low-, and ultralow-molecular-weight (ULMW) heparins and "non-anticoagulant" fractions (NAF) of heparin. Airway responsiveness was estimated before and 24 h postantigen as the cumulative provocating dose of carbachol that increased specific lung resistance by 400%. Only ULMW heparins caused a dose-dependent inhibition of antigen-induced EAR and LAR and postantigen airway hyperresponsiveness (AHR), whereas low- and medium-molecular-weight heparins were ineffective. The effects of ULMW heparin and ULMW NAF-heparin were comparable and inhibited the LAR and AHR even when administered "after" the antigen challenge. The ULMW NAF-heparin failed to inhibit the bronchoconstrictor response to histamine, carbachol, and leukotriene D(4), excluding a direct effect on airway smooth muscle. In six sheep, segmental antigen challenge caused a marked increase in bronchoalveolar lavage histamine, which was not prevented by inhaled ULMW NAF-heparin. The results of this study in the dual-responder sheep demonstrate that 1) the antiallergic activity of inhaled "fractionated" heparins is molecular-weight dependent, 2) only ULMW heparins inhibit the antigen-induced EAR and LAR and postantigen AHR, and 3) the antiallergic activity is mediated by nonanticoagulant fractions and resides in the ULMW chains of <2,500.  相似文献   

8.
To investigate the inhibitory effects of beta-adrenergic agonists and aminophylline on pulmonary responsiveness, we evaluated the ability of albuterol and aminophylline to attenuate pulmonary responses to aerosol challenge with methacholine and histamine in intact Basenji-Greyhound (BG) and selected mongrel dogs. Pulmonary responses were measured in untreated dogs and in dogs pretreated with albuterol (1 and 2.5 micrograms/kg) or aminophylline. Before aerosol challenge, baseline pulmonary resistance (RL) and dynamic compliance (Cdyn) were not significantly different between the BGs and the mongrels. In the untreated dogs, pulmonary responses to methacholine and histamine aerosols were not different between the BGs and the mongrels. Pretreatment with albuterol (1 microgram/kg) or aminophylline significantly attenuated the pulmonary response to methacholine in the mongrels but was without effect in the BGs. Albuterol (2.5 micrograms/kg) significantly attenuated the pulmonary response to methacholine in the BGs and the mongrels; however, this attenuation was significantly greater (P less than 0.05) in the mongrels than in the BGs. In response to histamine challenge, no differences were seen between the BGs and the mongrels in the control state (no pretreatment) or after pretreatment with albuterol or aminophylline. This study demonstrates that in BGs pulmonary responsiveness to methacholine but not histamine is resistant to inhibition by beta-adrenergic agonists. This may result from a qualitative or quantitative defect in either the cholinergic or beta-adrenergic receptor or to an abnormality distal to the receptors in the signal transduction mechanism at a site where the two signals interact.  相似文献   

9.
The role of histamine as a mediator of hypoxic pulmonary vasoconstriction was examined in intact anesthetized dogs. Antagonism of histamine vasoconstrictor (H1) receptors with a classic antihistaminic drug (chlorpheniramine) failed to prevent or modify the pulmonary vascular responses to hypoxia (10% O2). Blockade of histamine vasodilator (H2) receptors with a newly synthesized blocking agent (metiamide) potentiated the vasoconstriction induced by hypoxia and prevented the normal increase in heart rate. Combined H1- and H2-receptor blockade also did not prevent or reduce the hypoxic pulmonary pressor response, although it did effectively abolish the cardiovascular actions of infused histamine. In other dogs, histamine infused (3.6 mug/kg per min) during hypoxia attenuated the pulmonary vasoconstriction induced by hypoxia. The results imply that, in the dog, histamine does not mediate hypoxic pulmonary vasoconstriction. However, histamine does appear to be released during hypoxia, and it may play a role in modulating the pulmonary vascular responses to hypoxia by opposing the hypoxia induced vasoconstriction. The results also imply that histamine may be responsible for the increase in heart rate during hypoxia.  相似文献   

10.
We have previously shown that there is an acute increase in anastomotic bronchial blood flow (Qbr) after pulmonary arterial obstruction in dogs. We examined the role of arachidonic acid metabolites in mediating this increase. The left lower lobe (LLL) was isolated and perfused (zone 2) with autologous blood in open-chested anesthetized dogs (n = 19). Qbr was measured from the amount of blood that overflowed from the closed vascular circuit of the suspended LLL and changes in its weight. In the control animals, there was a prompt and significant increase in Qbr following pulmonary arterial obstruction. Pretreatment with indomethacin (n = 6) or sodium salicylate (n = 4) almost completely blocked this rise in Qbr. Following pulmonary arterial occlusion, there was a rise in both thromboxane and a prostacyclin metabolite (6-keto-PGF1 alpha) in the blood of the pulmonary circulation of the LLL, although the 6-keto-PGF1 alpha rose relatively more. Pretreatment with indomethacin caused a fall in both thromboxane and prostacyclin levels (n = 3), which no longer rose after pulmonary arterial occlusion. These findings suggested that the balance of the vasodilator (prostacyclin) and vasoconstrictor (thromboxane) prostaglandins may play an important role in mediating the rise in Qbr that follows pulmonary arterial obstruction.  相似文献   

11.
In this study we examined the effects of an orally active leukotriene (LT) antagonist YM-16638 [[5-[[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)propyl]thio]-1,3,4- thiadiazol-2-yl]thio] acetic acid on antigen-induced early and late responses in allergic sheep. For all studies YM-16638 was administered via intragastric tube 1 h before airway challenge with Ascaris suum antigen. Six allergic sheep were challenged on four occasions (2 control and 2 drug trials) each greater than or equal to 14 days apart and the tests were conducted in the following order: control-1; YM-16638 30 mg/kg; control-2; YM-16638 10 mg/kg. Specific lung resistance (SRL) was used as an index of the airway response to antigen and was measured before and serially after antigen challenge. In both control trials antigen challenge resulted in significant early and late airway responses (i.e. increases in SRL); however, there was a significant difference between the peak late increases of SRL in control-1 (206%) and control-2 (115%) suggesting a carry-over effect of the 30 mg/kg dose of YM-16638. At both doses, YM-16638 reduced the early response and blocked the late response when compared to either control trial. These results suggest that sulfidopeptide LTs contribute to both antigen-induced early and late airway responses in allergic sheep.  相似文献   

12.
Antigen challenge can provoke acute bronchoconstriction, recognized as immediate asthmatic response (IAR), but the evolving events in this reaction are not well defined. Recently, a novel peptide, designated adrenomedullin, was isolated from human pheochromocytoma, and has been shown to have potent systemic and pulmonary vasodilator activity.The purpose of this study was to elucidate the influence of adrenomedullin in the development of IAR. Passively sensitized guinea pigs were anesthetized and treated with diphenhydramine hydrochloride, and then artificially ventilated. Ovalbumin was inhaled after an intravenous administration of adrenomedullin. Other studies were performed in naive guinea pigs to investigate the airway responses to inhaled methacholine or histamine after an intravenous administration of adrenomedullin. Antigen challenge caused bronchoconstriction in sensitized guinea pigs. Adrenomedullin did not inhibit the antigen-induced bronchoconstriction in sensitized guinea pigs or the dose-dependent responses to inhaled methacholine or histamine in naive animals in spite of its vasodilating effect. We conclude that an intravenous administration of adrenomedullin does not influence antigen-induced bronchoconstriction or bronchial responsiveness to inhaled methacholine or histamine in vivo.  相似文献   

13.
We determined whether platelet-activating factor (PAF) plays a role in allergen-induced airway responses by studying the effects of a selective PAF antagonist WEB-2086 on antigen-induced early and late airway responses in allergic sheep. In seven sheep, inhaled Ascaris suum produced significant early (282%) and late (176%) increases in specific lung resistance (sRL). WEB-2086 (1 mg/kg iv) given 20 min before antigen challenge did not affect the early response, but the peak late increase in sRL was only 37% over base line (P less than 0.05 vs. control). To study the mechanism by which PAF contributes to antigen-induced responses, we evaluated the effects of pharmacological probes on PAF-induced bronchoconstriction. Inhaled PAF (dose range 75-700 micrograms) caused reproducible (r = 0.781, P less than 0.05) increases in sRL in eight sheep. The PAF-induced bronchoconstriction was blocked by WEB-2086 (1 mg/kg iv) and by the leukotriene antagonist FPL-55712 (30 mg by aerosol); however, neither the cyclooxygenase blocker indomethacin (2 mg/kg iv) nor the histamine H1-antagonist chlorpheniramine (2 mg/kg iv) blocked the PAF response. WEB-2086, however, did not block bronchoconstriction induced by aerosol leukotriene D4, indicating that PAF acts indirectly through leukotrienes. Finally, we determined whether PAF could induce late airway responses. Inhaled PAF produced an immediate increase in sRL in all seven sheep tested, but late airway responses were observed in only three of the seven sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Histamine can be recovered from the blood of ragweed-sensitized dogs after aerosol antigen challenge, although its source is unknown. Neutrophils and eosinophils have been recovered from bronchoalveolar lavage fluid (BALF) obtained under identical conditions. We investigated the time course of changes in histamine levels in plasma and BALF taken from ragweed-sensitized dogs after aerosol challenge. Changes in the numbers of circulating neutrophils, eosinophils, lymphocytes, monocytes, and platelets were also studied. After 3 min, total pulmonary resistance (RL) was maximally increased and systolic blood pressure was maximally decreased. Histamine levels in plasma and BALF were increased and circulating eosinophils and neutrophils were decreased. After 15 min, platelet numbers were reduced. By 90 min, changes in RL, blood pressure, plasma and BALF histamine concentrations, and circulating neutrophils and eosinophils had returned to base-line values, but platelet numbers remained significantly decreased. Sham challenge caused no significant changes in any of these variables. Intravenous administration of histamine in doses large enough to attain plasma levels comparable with those achieved after aerosol antigen challenge resulted in no concomitant rise in BALF histamine levels. We conclude that antigen challenge in sensitized dogs causes increases in BALF and plasma histamine levels and is associated with a reduction in circulating neutrophils, eosinophils, and platelets. It is likely that antigen causes airway mast cells to release mediators that move down a concentration gradient from the airways to the pulmonary circulation.  相似文献   

15.
Tachyphylaxis to inhaled aerosolized histamine in anesthetized dogs   总被引:2,自引:0,他引:2  
Three consecutive dose-response curves to inhaled aerosolized histamine, separated by 1-h intervals, were obtained in 20 anesthetized mongrel dogs. In general, successive histamine dose-response curves shifted progressively rightward. Changes in pulmonary resistance (RL) and dynamic compliance (Cdyn) in response to low concentrations of histamine were reproducible, but responses to high concentrations (sufficient to at least double RL or decrease Cdyn by at least 30%) decreased on successive dose-response curves. The concentration of histamine required to double RL increased significantly (P less than 0.05) from 1.01 mg/ml on the first to 1.62 and 2.02 mg/ml on the second and third dose-response curves. In contrast, consecutive methacholine dose-response curves were not significantly different. Indomethacin pretreatment (5 mg/kg iv) prevented histamine tachyphylaxis, whereas atropine (4 mg iv) did not. However, indomethacin did not alter base-line pulmonary mechanics or histamine responsiveness as measured on the first dose-response curve. We conclude that tachyphylaxis to inhaled aerosolized histamine occurs in anesthetized dogs. Our results are consistent with an important role for endogenous prostaglandins in modulating the airway responses to repeated histamine exposures.  相似文献   

16.
Previous studies suggested that although rats that were passively sensitized [monoclonal murine immunoglobulin E (IgE)] would respond to pulmonary antigen challenge with an immediate increase in resistance, they exhibited no late increases in resistance, unlike late changes in rats actively sensitized to preferentially produce IgE antibody. We hypothesized that passively sensitized rats also would not develop antigen-induced pulmonary inflammation. In a blinded protocol we compared immediate responses and pulmonary resistance and inflammation at 8, 19 and 24 h after challenge with placebo antigen, with dinitrophenol-bovine serum albumin (DNP-BSA) to elicit a passively sensitized response, or with ovalbumin (OA) to elicit an actively sensitized response. Despite similar immediate responses to OA and DNP-BSA, only the rats challenged with OA had marked inflammatory changes and a significant incidence of late elevations in resistance. Inflammation scores and lung resistance were significantly correlated only in the OA group. We also observed that anesthesia with fentanyl/droperidol significantly attenuated the immediate but not the late responses to antigen challenge, compared with rats anesthetized with ketamine. We conclude that IgE-mediated immediate responses to pulmonary antigen challenge are insufficient, and may be unnecessary, to initiate antigen-induced late inflammatory changes.  相似文献   

17.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

18.
Leukotriene (LT) D4 is a putative mediator of allergic asthma: inhaled LTD4 produces early and late increases in specific lung resistance (SRL) and slows tracheal mucus velocity (TMV) similat to inhaled antigen. In this study we examined the effects of an orally active LTD4/LTE4 antagonist, LY171883 [1-<2-Hydroxy-3-propyl-4-<4-(1H-Tetra-zol-5-yl) Butoxy>Phenyl>Ethanonel], on early and late changes in SRL and TMV following airway challenge with antigen in conscious allergic sheep. SRL and TMV were measured before and up to 8 h and 24 h after antigen challenge after either LY171883 (30 mg/kg, p.o. 2 h before challenge) or placebo pretreatment. After placebo pretreatment antigen challenge resulted in significant early (483% over baseline) and late (221% over baseline) increases in SRL (n=9). LY171883 pretreatment, however, significantly reduced the early increase in SRL (163% over baseline) and blocked the late response. LY171883 did not prevent the antigen-induced fall in TMV from 5–8 h post challenge (n=6), but TMV recovered more rapidly in the drug trial returning to baseline values by 24 h. These results suggest that the generation of LTD4, and its metabolite LTE4, during airway anaphylaxis contributes to the early increase in SRL and is important for eliciting the late increase in SRL as well as contributing to the fall in TMV.  相似文献   

19.
The effect of a copper amine oxidase (histaminase) purified from the pea seedling as free or immobilized enzyme on the response to specific antigen was studied in isolated hearts from actively sensitized guinea pigs. In vitro challenge with the specific antigen of hearts from actively sensitized animals evokes a positive inotropic and chronotropic effect, a coronary constriction, followed by dilation and an increase in the amount of histamine and nitrites, the oxidation product of nitric oxide, in the perfusates. In the presence of both forms of histaminases, the positive inotropic and chronotropic responses as well as the coronary constriction and the release of histamine were fully blocked. The amount of nitrites, appearing in the perfusates when anaphylaxis is elicited in the presence of both forms of histaminases, is significantly increased, as well as nitric oxide synthase activity and cyclic GMP content in cardiac tissue, while cardiac calcium overload was significantly prevented. These observations demonstrate that the decrease in the anaphylactic release of histamine and the subsequent abatement of the cardiac response to antigen can be accounted for by the inactivation by histaminase of the released histamine and by a stimulation of endogenous nitric oxide production.  相似文献   

20.
We investigated the effects of OKY-046, a potent and selective thromboxane A2 (TxA2) synthetase inhibitor, on anaphylactic bronchoconstriction and release of chemical mediators into airway lumen in sensitized guinea pigs in vivo. OKY-046 dose-dependently inhibited antigen-induced anaphylactic bronchoconstriction with or without mepyramine, a histamine H1 antagonist. In the presence of mepyramine, OKY-046 (300 mg/kg, p.o.) elicited significant reductions in histamine (1 min) and TxB2 increases (1-15 min) in bronchoalveolar lavage (BAL) fluid but significantly increased the plasma level of 6-keto-PGF1 alpha, a stable PGI2 metabolite, after antigen challenge. On the contrary, indomethacin only significantly reduced increases in TxB2 levels. These results suggest that the antiasthmatic effect of OKY-046 is probably due to inhibition of TxA2 synthesis and suppression of histamine release via a PGI2 shunting mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号