首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The incidence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was more than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y = -0.010 + 0.057 D, respectively. The incidence of chromosome-type aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with gamma-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed.  相似文献   

2.
Chromosome aberrations induced by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavoring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G2 phase suppressed UV- and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. These G1- and G2-dependent anticlastogenic effects were not observed in the presence of 2',3'-dideoxythymidine, an inhibitor of DNA polymerase beta. Based on these results, the anticlastogenic effect of vanillin was considered to be due to the promotion of the DNA rejoining process in which DNA polymerase beta acts.  相似文献   

3.
The effects of tritium (HTO) beta-rays on human sperm chromosomes were studied using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. Semen samples were treated with media containing 1.53-24.3 mCi/ml HTO for about 80 min. 1290 spermatozoa from the controls and 1842 spermatozoa from the irradiated groups were karyotyped. The incidence of spermatozoa with structural chromosome aberrations increased linearly with increasing dosage. Breakage-type aberrations occurred far more frequently than exchange-type. Chromosome-type aberrations appeared far more frequently than chromatid-type. All of these types of aberrations showed linear dose-dependent increases. The RBE values of HTO beta-rays relative to X-rays were calculated for the above-mentioned 5 indices, respectively. Their RBE values ranged from 1.89 to 3.00 when the absorbed dose was estimated to be the minimum, whereas the values ranged between 1.04 and 1.65 when the absorbed dose was estimated to be the maximum.  相似文献   

4.
Mercury compounds are among the most serious environmental pollutants. In this communication, the potentiating effects of organic and inorganic mercuries on clastogen-induced chromosome aberrations were studied in Chinese hamster CHO K1 cells. Post-treatment with monoalkylated mercuries — methyl mercuric chloride (MeHgCl) and ethyl mercuric chloride (EtHgCl) - increased the number of breakage-and exchange-type aberrations induced by 4-nitroquinoline 1-oxide (4NQO) and methyl methanesulfonate. With the DNA crosslinking agents mitomycin C (MMC) and cisplatin, MeHgCl enhanced both types of aberrations while EtHgCl enhanced breakage-type aberrations only. Since these monoalkylated mercuries did not show clastogenic effects by themselves under the present experimental conditions, the increases in chromosome aberrations were not additive. Dialkylated mercuries (dimethyl mercury and diethyl mercury) and inorganic mercuries (HgCl and HgCl2) did not show any potentiating effects.

When MMC- or 4NQO-treated cells were post-treated with MeHgCl during the G1 phase, both breakage- and exchange-type aberrations were enhanced. Treatment with EtHgCl during the G1 phase also enhanced both types of aberrations induced by 4NQO. With MMC, however, G1 treatment with EtHgCl did not show any potentiating effect. MeHgCl and EtHgCl treatments during the G2 phase enhanced breakage-type aberrations only.

Based on these results, the following possible mechanisms for potentiation of clastogenicity by monoalkylated mercuries were suggested; (1) they interfere with repair of base lesions induced by 4NQO and MMS during the pre-replicational stage, thereby increasing unrepaired DNA lesions which convert into DNA double-strand breaks in S phase, (2) MeHgCl (but not EtHgCl) also inhibits repair of crosslinking lesions during the pre-replicational stage, and (3) their G2 effects enhance breakage-type aberrations only.  相似文献   


5.
Repair of human sperm chromosome aberrations in the hamster egg   总被引:7,自引:0,他引:7  
Summary In order to study the repair capacity of fertilized hamster eggs for the lesions present or induced in human sperm, we have examined the potentiating effect of caffeine, a DNA repair inhibitor, on the frequency and types of sperm chromosome aberrations. Sperm samples were donated by an individual treated with chemotherapy for a testicular cancer 3 years previously. Exposure of spermatozoa and inseminated oocytes to caffeine led to an increase of sperm chromosome aberrations, indicating that the damage to human sperm can be repaired in untreated hamster egg cytoplasm. The potentiating effect of caffeine was mainly reflected in an increase of unrejoined aberrations, indicating that the formation of chromosomal rearrangements is also inhibited. Since both chromatid-type and chromosome-type aberrations increase after treatment with caffeine, damage to human sperm can probably be repaired inside the hamster egg cytoplasm by pre and post-replication repair mechanisms.  相似文献   

6.
Using 1-β- -arabinofuranosylcytosine (AraC) which is an inhibitor of DNA-repair resynthesis, previous studies have shown that the frequency of chromosome-type aberrations is influenced by the rate of repair of araC-inhibitable DNA damage. The experiments described here are a further test of this hypothesis and also an attempt to determine if the different sensitivities of lymphocytes of different species to X-ray-induced aberrations are related to the rate of endonucleolytic incision during repair of DNA damage. Unstimulated lymphocytes from 4 species were exposed to an X-ray dose of 200 rad, and then incubated with araC for 0, 1, 2, 3 or 4 h. The aberration frequencies increased in all species up to 3–4 h. It was also clear that the rate of increase was different between species and was approximately proportional to the ratios of X-ray-induced aberrations observed in the absence of araC. For example, human lymphocytes are approximately twice as sensitive as rabbit lymphocytes to the induction of aberrations by X-rays and the rate of increase of aberrations in the presence of araC was about twice as great in human as rabbit lymphocytes. In addition, using 50, 100, 200 or 300 rad of X-rays and treating human lymphocytes for 0, 1, 2 or 3 h in araC post-irradiation, we have shown that the rate of increase in aberrations is proportional to the amount of araC-inhibitable DNA damage; with a limiting dose at about 50 rad. These results appear to provide a basis for interpreting differences in sensitivities to aberration induction among mammalian species.  相似文献   

7.
Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from the early spermatid to late spermatocyte stage with X-irradiation of 4 Gy (16-20 days after X-irradiation) was markedly higher than that in the eggs fertilized with sperm recovered from spermatozoa to late spermatid stage (0-8 days after X-irradiation). The induced chromosome aberrations predominantly consisted of chromosome-type aberrations, the main type being chromosome fragment followed by chromosome exchange through all the spermiogenic stages. On the other hand, a high frequency of chromosome aberrations was not induced through all the stages with MMC treatment of 5 mg/kg. The remarkable potentiation effects of 3AB and caffeine were found in the eggs fertilized with sperm recovered from almost all the spermiogenic stages after X-irradiation. In the MMC treatment, a remarkable caffeine effect was observed occasionally in mid-early spermatids to late spermatocytes where a large amount of MMC damage could be induced. These results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs.  相似文献   

8.
Chromosome analysis of human sperm   总被引:10,自引:6,他引:4  
Summary A modified technique has been developed for the visualization of the chromosomes in human sperm. The cytogenetic analysis of 129 G-banded human sperm metaphases of 6 normal donors showed an incidence of structural and numerical chromosome abnormalities of 7.8%. Two out of 129 spermatozoa were aneuploid (1.6%). The frequency of sperms with chromatid-type aberrations was 2.3% (3/129). Chromosome-type aberrations were found in 5 out of 129 (3.9%) spermatozoa. X to Y ratio did not differ significantly from the expected one-to-one ratio. Twenty-six sperm complements from a patient 18–20 months after testes exposure to 30 Gy were examined. A significant increase of numerical and structural chromosome abnormalities was not observed. Chromatidtype aberrations were found in two sperm complements (7.7%) and chromosome-type aberrations in one sperm complement (3.9%). The cytogenetic analysis of 15 human sperms from a cancer patient 26 months after chemotherapy showed an increased frequency of aberrant sperm complements (33.4%). One chromatid-type (6.7%), three chromosometype aberrations (20.0%) and one (6.7%) hyperploid sperm complement could be observed. The sample size is still too small to answer the question whether chemical mutagens may increase the frequency of chromosomal abnormalities in human sperm.  相似文献   

9.
Cytological analysis of the first-cleavage metaphase of eggs exposed to X-rays at the mature oocyte stage or the pronuclear stage 4 h after fertilization was performed using the in vitro fertilization technique. The frequency of chromosome aberrations in irradiated mature oocytes increased exponentially with dose, the dose-response relationship being best fitted to the linear-quadratic model. On the other hand, in eggs irradiated at the early pronuclear stage, the frequency increased linearly with dose and the dose-response relationship was best fitted to the linear model. The aberrations were mainly chromosome-type (mature oocytes: 86.0% and pronuclear stage: 88.5%) and the majority were fragments in both cases. Eggs in the early pronuclear stage were markedly more radiation-sensitive than mature oocytes. A comparison of the present results with the previous ones (Matsuda et al., 1985b) showed that the sensitivities to induction of chromosome aberrations were in the order: egg at early pronuclear stage (highest) greater than mature oocyte greater than mature sperm.  相似文献   

10.
To study the repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes, the potentiating effects of 3 well-known repair inhibitors, arabinofuranosyl cytosine (ara-C), 3-aminobenzamide (3AB) and caffeine, on the frequency of induced chromosome aberrations were examined in eggs fertilized with X-irradiated sperm or in eggs irradiated with X-rays at the mature oocyte stage immediately before fertilization. Gametic treatment, fertilization and embryo culture were carried out in vitro. Ara-C treatment was done only in the pre-DNA replication period, while treatment with 3AB and caffeine was continuous from fertilization to the first-cleavage metaphase. The induction of chromosome aberrations by exposing sperm or oocytes to X-rays was remarkably potentiated by post-treatment incubation in the presence of each of the 3 inhibitors. This result indicates the possibility that X-ray damage induced in sperm or oocytes is reparable in the fertilized eggs and that various types of repair processes are involved.  相似文献   

11.
This study demonstrated that freeze-dried mouse spermatozoa possess strong resistance to 137Cs gamma-ray irradiation at doses of up to 8 Gy. Freeze-dried mouse spermatozoa were rehydrated and injected into mouse oocytes with an intracytoplasmic sperm injection (ICSI) technique. Most oocytes can be activated after ICSI by using spermatozoa irradiated with gamma-rays before and after freeze-drying. Sperm chromosome complements were analyzed at the first cleavage metaphase. Chromosome aberrations increased in a dose-dependent manner in the spermatozoa irradiated before freeze-drying. However, no increase in oocytes with chromosome aberrations was observed when fertilized by spermatozoa that had been irradiated after freeze-drying, as compared with freeze-dried spermatozoa that had not been irradiated. These results suggest that both the chromosomal integrity of freeze-dried spermatozoa, as well as their ability to activate oocytes, were protected from gamma-ray irradiation at doses at which chromosomal damage is found to be strongly induced in spermatozoa suspended in solution.  相似文献   

12.
The relative sensitivities of dictyate oocytes from young and old female mice to radiation-induced chromosome damage were examined in 2 separate experiments. Firstly, females were given either 2 or 4 Gy of X-rays and metaphase I stage oocytes collected 16.5 days later. Analysis of these cells showed dose-related increases in chromosome aberrations in both age groups. The response was significantly greater in oocytes of older females. In the second experiment, females were given 4 Gy of X-rays and metaphase I stage oocytes collected 3.5 days later. Again, a significantly larger frequency of aberrations was present in cells from older animals. Overall, these 2 experiments provide unambiguous evidence that the radiosensitivity of mouse dictyate oocytes increases with advancing maternal age.  相似文献   

13.
During cross‐fertilization between Chinese hamster spermatozoa and Syrian hamster oocytes, incorporated sperm heads frequently fail to develop into male pronuclei, whereas the group of oocyte chromosomes develop into female pronuclei. The present study applies this cross‐fertilization system to the cytogenetic investigation of mammalian hybrid embryos. Immediately after insemination, oocytes were exposed to 0.1 μg/ml nocodazole for 1 hr (1 hr group) or 2 hr (2 hr group), then further cultured. Although the rates of sperm penetration in the 1 hr (48.0%) and 2 hr (75.8%) groups were significantly lower than that in the control group (89.8%), the ratios of male pronuclear formation were higher in both exposed groups (79.4% and 74.2%, respectively) than in the control group (10.6%). These results were apparently due to sperm head decondensation induced during the meiotic arrest of oocytes at metaphase II by nocodazole. Chromosomes of hybrid zygotes obtained after nocodazole exposure were analyzed at the first cleavage metaphase. The incidence of structural chromosome aberrations in the Chinese hamster genome of hybrid zygotes was high in the control (42.1%) and 1 hr (48.8%) groups. This incidence was reduced to 14.4% in the 2 hr group. Because the lag of sperm head decondensation behind the second meiotic division of oocytes was greater in the control and 1 hr groups than in the 2 hr group, untimely sperm head decondensation may be implicated in occurrence of structural chromosome aberrations in the male genomes of hybrid zygotes. Mol. Reprod. Dev. 52:117–124, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
The metabolic inhibitor of DNA synthesis cytosine arabinoside (ara-C) is known to induce chromosome aberrations in human lymphocytes. It has been recently argued, however, that there is no unequivocal evidence that ara-C can damage chromosomes directly. Therefore, the effect of ara-C on unstimulated human lymphocytes was examined directly by means of the premature chromosome condensation technique. In about 50% of the cells, ara-C effectively induced chromosome fragments, which did not show rejoining even after the chemical was washed out. These results suggest that a possible selection against damaged cells in their progress to mitosis could result in the low yields of ara-C-induced chromosome aberrations reported in the literature. The effect of ara-C on the repair of radiation-induced chromosome aberrations was also examined. Ara-C did not affect the rejoining of the chromosome fragments induced in unstimulated human lymphocytes by 6 Gy of X-rays.  相似文献   

15.
Losses and duplications of BSY y+-chromosome markers were induced by irradiation of spermatozoa with either 0.5-MeV neutrons or 100-kV X-rays. These 2 types of radiation are known to induce significantly different ratios of double:single strand breaks in DNA. Exceptional progeny were grouped into 3 categories; no Y marker, one Y marker, and Y marker duplications + mosaics. The last combination consisted of exceptions derived from only chromatid-type rearrangements. All other classes of exceptions may be derived from either chromatid- or chromosome-type rearrangements. Doses of 15 Gy neutrons and 27 Gy X-rays induced identical frequencies of exceptional progeny, giving an RBE of 1.8. The ratios of the 3 classes of exceptions were similar for both types of radiation. This observation can be interpreted as indicating that, under the conditions used here, chromosome and chromatid rearrangements are not derived directly from double and single DNA strand breaks, respectively.  相似文献   

16.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

17.
Female NMRI mice were irradiated with various doses of X-rays and induced chromosome aberrations were scored in MII oocytes (Dosage: 0.222, 0.666, 2 and 6 Gy). After irradiation with 2 Gy, early zygotes were examined in the 2-cell stage; additional dominant lethals were counted and surviving embryos were examined after 13.5 days of pregnancy. 87.2% of the MII oocytes showed structural chromosomal aberrations after irradiation with 2 Gy. Surviving embryos, however, failed to show any increase in the aberration rate. This result points to (almost) complete elimination of genetically damaged oocytes and zygotes already before birth. In addition to the structural aberrations, aneuploidies were induced. Most of them, however, were hypoploidies. Hence, the study confirmed the well-known susceptibility of oocytes around the time of fertilization for induced chromosome loss. Induced hyperploidies, however, were very rare. Evidence for induction of meiotic non-disjunction was weak. In surviving embryos, no increase in numerical aberrations, either hypoploid or hyperploid was discovered. The significance of these data for the prediction of chromosomal damage due to to ionizing radiation in humans is discussed. Recent risk estimates of UNSCEAR and other agencies represent very cautious upper levels.  相似文献   

18.
Mutations were induced in tissue-cultured wasabi (Wasabia japonica Matsumura) by treating in vitro-derived shoot tips with either γ-rays or X-rays at 0, 10, 20, 40 or 80 Gy. Doses of up to 40 Gy of either γ- or X-ray treatments resulted in a survival rate of more than 60% in culture after 3 mo. The use of γ- or X-rays at doses between 10 Gy and 40 Gy to induce mutation in W. japonica resulted in an alteration of the growth and allyl isothiocyanate (AITC) content of multiple shoots after 3 mo. in culture on Murashige and Skoog medium containing 5 μM N6-benzyladenine (BA). Putative mutants from the 40 Gy treatments of either γ- or X-rays exhibited a reduction in shoot weight, number, and height, whereas treatments of either γ-rays or X-rays at 10 Gy and 20 Gy doses showed no significant differences in shoot growth. All shoots treated with 80 Gy were either necrotic or irregenerable, while those treated with 40 Gy produced deformed leaves, from both types of ionizing radiation. Concentrations of AITC were measured by the use of gas chromatography-mass spectrometry (GC-MS). The accumulation of AITC was shown to decrease when doses increased in both γ- and X-ray treatments, compared with the controls. Positive responses were solely occurred at 18 mo. after transfer of in vitro rooted shoots to the shade house. The survival rate, rhizome weight and AITC content of plants derived from shoots treated with 20 Gy or 40 Gy of either γ-rays or X-rays were significantly greater than those of the controls.  相似文献   

19.
K Kishi 《Mutation research》1988,208(2):109-113
1-beta-D-Arabinofuranosylcytosine (ara C) induces chromosome-type aberrations in mammalian cells by inhibiting repair replication in the G1 phase. The effect of novobiocin, an inhibitor of prokaryotic gyrases, on G1 repair in human cells was studied cytogenetically using this characteristic of ara C. The experiment was based on the assumption that if novobiocin inhibits the relaxation of chromatin required prior to repair replication, it would reduce the frequency of chromosome-type aberrations in cells treated with a mutagen followed by posttreatment with ara C. It has also been shown that in lymphocytes ara C induces chromosome-type aberrations which were not caused by any induced DNA lesion, and that the frequency of these aberrations changes with the age of the blood donor. The effect of novobiocin on the frequency of chromosome-type aberrations induced by ara C in lymphocytes without mutagen pretreatment was also investigated for blood samples from donors of different ages. Human peripheral blood lymphocytes, which were either untreated of treated with 4-nitroquinoline-N-oxide (4NQO) or methyl methanesulfonate (MMS), were posttreated in their early G1 phase with ara C only or ara C and novobiocin. The resulting chromosome-type aberrations were observed in cells in their first mitoses, and a comparison was made between the frequency of aberrations occurring in the presence of novobiocin and in its absence. The results showed that novobiocin reduced the frequency of chromosome-type aberrations induced by ara C in both mutagen-pretreated and -non-pretreated cells, and that lymphocytes from younger donors were less sensitive to novobiocin. The present study demonstrated cytogenetically the existence of a novobiocin-sensitive process to induce chromosome recombination in G1 lymphocytes.  相似文献   

20.
Most chemicals are S-dependent and are potent inducers of SCE, but do not produce chromosome-type aberrations in the first metaphases after exposure. Ionizing radiation, which is an S-independent agent, produces chromosome-type aberrations, especially dicentrics and rings, but inefficiently produces chromatid-type aberrations. A series of experiments has been performed to investigate whether cytogenetic damage induced by ionizing radiation (gamma-rays) might be assessed separately from that induced by the alkylating chemical, mitomycin C (MMC), when human lymphocytes were exposed to these 2 agents in combination. Whole-blood cultures of human lymphocytes in G0 phase were exposed to gamma-rays and MMC in combination or separately. Cytogenetic analyses were done for both chromosome aberrations (CA), analyzed in cultures incubated for 56 h without BrdUrd, and sister-chromatid exchanges (SCEs) in cultures incubated for 72 h with BrdUrd. The frequency of chromosome-type aberrations (dicentrics and rings) increased with increasing doses of gamma-rays from 0.5 to 4.0 Gy. The dose-response relationships were the same with or without concomitant treatment with MMC (10(-6) M). Although the SCE frequency increased with increasing doses of MMC, the increase was nearly the same as when cells were treated with both MMC and gamma-rays (2 Gy). There was no interaction between MMC and gamma-rays concerning these 2 endpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号