首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the translocation of tRNAs and mRNA relative to the ribosome, the B1a, B1b and B1c bridges undergo the most extensive conformational changes among the bridges between the large and the small ribosomal subunits. The B1a bridge, also called the "A-site finger" (ASF), is formed by the 23S rRNA helix 38, which is located right above the ribosomal A-site. Here, we deleted part of the ASF so that the B1a intersubunit bridge could not be formed (DeltaB1a). The mutation led to a less efficient subunit association. A number of functional activities of the DeltaB1a ribosomes, such as tRNA binding to the P and A-sites, translocation and EF-G-related GTPase reaction were preserved. A moderate decrease in EF-G-related GTPase stimulation by the P-site occupation by deacylated tRNA was observed. This suggests that the B1a bridge is not involved in the most basic steps of the elongation cycle, but rather in the fine-tuning of the ribosomal activity. Chemical probing of ribosomes carrying the ASF truncation revealed structural differences in the 5S rRNA and in the 23S rRNA helices located between the peptidyltransferase center and the binding site of the elongation factors. Interestingly, reactivity changes were found in the P-loop, an important functional region of the 23S rRNA. It is likely that the A-site finger, in addition to its role in subunit association, forms part of the system of allosteric signal exchanges between the small subunit decoding center and the functional centers on the large subunit.  相似文献   

2.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

3.
During protein synthesis, aminoacyl-tRNA (aa-tRNA) and release factors 1 and 2 (RF1 and RF2) have to bind at the catalytic center of the ribosome on the 50S subunit where they take part in peptide bond formation or peptidyl-tRNA hydrolysis, respectively. Computer simulations of aa-tRNA movement into the catalytic site (accommodation) suggested that three nucleotides of 23S rRNA, U2492, C2556, and C2573, form a “gate” at which aa-tRNA movement into the A site is retarded. Here we examined the role of nucleotides C2573 of 23S rRNA, a part of the putative accommodation gate, and of the neighboring A2572 for aa-tRNA binding followed by peptide bond formation and for the RF2-dependent peptide release. Mutations at the two positions did not affect aa-tRNA accommodation, peptide bond formation, or the fidelity of aa-tRNA selection, but impaired RF2-catalyzed peptide release. The data suggest that the ribosome is a robust machine that allows rapid aa-tRNA accommodation despite the defects at the accommodation gate. In comparison, peptide release by RF2 appears more sensitive to these mutations, due to slower accommodation of the factor or effects on RF2 positioning in the A site.  相似文献   

4.
The large subunit rRNA in eukaryotes contains an unusually dense cluster of 8-10 pseudouridine (Psi) modifications located in a three-helix structure (H37-H39) implicated in several functions. This region is dominated by a long flexible helix (H38) known as the "A-site finger" (ASF). The ASF protrudes from the large subunit just above the A-site of tRNA binding, interacts with 5 S rRNA and tRNA, and through the terminal loop, forms a bridge (B1a) with the small subunit. In yeast, the three-helix domain contains 10 Psis and 6 are concentrated in the ASF helix (3 of the ASF Psis are conserved among eukaryotes). Here, we show by genetic depletion analysis that the Psis in the ASF helix and adjoining helices are not crucial for cell viability; however, their presence notably enhances ribosome fitness. Depleting different combinations of Psis suggest that the modification pattern is important and revealed that loss of multiple Psis negatively influences ribosome performance. The effects observed include slower cell growth (reduced rates up to 23% at 30 degrees C and 40-50% at 37 degrees C and 11 degrees C), reduced level of the large subunit (up to 17%), impaired polysome formation (appearance of half-mers), reduced translation activity (up to 20% at 30 degrees C and 25% at 11 degrees C), and increased sensitivity to ribosome-based drugs. The results indicate that the Psis in the three-helix region improve fitness of a eukaryotic ribosome.  相似文献   

5.
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.  相似文献   

6.
Intersubunit bridges are important for holding together subunits in the 70S ribosome. Moreover, a number of intersubunit bridges have a role in modulating the activity of the ribosome during translation. Ribosomal intersubunit bridge B2a is formed by the interaction between the conserved 23S rRNA helix-loop 69 (H69) and the top of the 16S rRNA helix 44. Within the 70S ribosome, bridge B2a contacts translation factors and the A-site tRNA. In addition to bridging the subunits, bridge B2a has been invoked in a number of other ribosomal functions from initiation to termination. In the present work, single-nucleotide substitutions were inserted at positions 1912 and 1919 of Escherichia coli 23S rRNA (helix 69), which are involved in important intrahelical and intersubunit tertiary interactions in bridge B2a. The resulting ribosomes had a severely reduced activity in a cell-free translation elongation assay, but displayed a nearly wild-type-level peptidyl transferase activity. In vitro reassociation efficiency decreased with all of the H69 variant 50S subunits, but was severest with the A1919C and ΔH69 variants. The mutations strongly affected initiation-factor-dependent 70S initiation complex formation, but exhibited a minor effect on the nonenzymatic initiation process. The mutations decreased ribosomal processivity in vitro and caused a progressive depletion of 50S subunits in polysomal fractions in vivo. Mutations at position 1919 decreased the stability of a dipeptidyl-tRNA in the A-site, whereas the binding of the dipeptidyl-tRNA was rendered more stable with 1912 and ΔH69 mutations. Our results suggest that the H69 of 23S rRNA functions as a control element during enzymatic steps of translation.  相似文献   

7.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

8.
During decoding, the ribosome selects the correct (cognate) aminoacyl-tRNA (aa-tRNA) from a large pool of incorrect aa-tRNAs through a two-stage mechanism. In the initial selection stage, aa-tRNA is delivered to the ribosome as part of a ternary complex with elongation factor EF-Tu and GTP. Interactions between codon and anticodon lead to activation of the GTPase domain of EF-Tu and GTP hydrolysis. Then, in the proofreading stage, aa-tRNA is released from EF-Tu and either moves fully into the A/A site (a step termed “accommodation”) or dissociates from the ribosome. Cognate codon-anticodon pairing not only stabilizes aa-tRNA at both stages of decoding but also stimulates GTP hydrolysis and accommodation, allowing the process to be both accurate and fast. In previous work, we isolated a number of ribosomal ambiguity (ram) mutations in 16S rRNA, implicating particular regions of the ribosome in the mechanism of decoding. Here, we analyze a representative subset of these mutations with respect to initial selection, proofreading, RF2-dependent termination, and overall miscoding in various contexts. We find that mutations that disrupt inter-subunit bridge B8 increase miscoding in a general way, causing defects in both initial selection and proofreading. Mutations in or near the A site behave differently, increasing miscoding in a codon-anticodon-dependent manner. These latter mutations may create spurious favorable interactions in the A site for certain near-cognate aa-tRNAs, providing an explanation for their context-dependent phenotypes in the cell.  相似文献   

9.
T Pape  W Wintermeyer    M Rodnina 《The EMBO journal》1999,18(13):3800-3807
The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.  相似文献   

10.
23S rRNA from Escherichia coli was cleaved at single internucleotide bonds using ribonuclease H in the presence of appropriate chimeric oligonucleotides; the individual cleavage sites were between residues 384 and 385, 867 and 868, 1045 and 1046, and 2510 and 2511, with an additional fortuitous cleavage at positions 1117 and 1118. In each case, the 3'' terminus of the 5'' fragment was ligated to radioactively labeled 4-thiouridine 5''-,3''-biphosphate ("psUp"), and the cleaved 23S rRNA carrying this label was reconstituted into 50S subunits. The 50S subunits were able to associate normally with 30S subunits to form 70S ribosomes. Intra-RNA crosslinks from the 4-thiouridine residues were induced by irradiation at 350 nm, and the crosslink sites within the 23S rRNA were analyzed. The rRNA molecules carrying psUp at positions 867 and 1117 showed crosslinks to nearby positions on the opposite strand of the same double helix where the cleavage was located, and no crosslinking was detected from position 2510. In contrast, the rRNA carrying psUp at position 384 showed crosslinking to nt 420 (and sometimes also to 416 and 425) in the neighboring helix in 23S rRNA, and the rRNA with psUp at position 1045 gave a crosslink to residue 993. The latter crosslink demonstrates that the long helix 41-42 of the 23S rRNA (which carries the region associated with GTPase activity) must double back on itself, forming a "U-turn" in the ribosome. This result is discussed in terms of the topography of the GTPase region in the 50S subunit, and its relation to the locations of the 5S rRNA and the peptidyl transferase center.  相似文献   

11.
The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.  相似文献   

12.
Structural dynamics of ribosomal RNA during decoding on the ribosome   总被引:5,自引:0,他引:5  
Decoding is a multistep process by which the ribosome accurately selects aminoacyl-tRNA (aa-tRNA) that matches the mRNA codon in the A site. The correct geometry of the codon-anticodon complex is monitored by the ribosome, resulting in conformational changes in the decoding center of the small (30S) ribosomal subunit by an induced-fit mechanism. The recognition of aa-tRNA is modulated by changes of the ribosome conformation in regions other than the decoding center that may either affect the architecture of the latter or alter the communication of the 30S subunit with the large (50S) subunit where the GTPase and peptidyl transferase centers are located. Correct codon-anticodon complex formation greatly accelerates the rates of GTP hydrolysis and peptide bond formation, indicating the importance of crosstalk between the subunits and the role of the 50S subunit in aa-tRNA selection. In the present review, recent results of the ribosome crystallography, cryoelectron microscopy (cryo-EM), genetics, rapid kinetics and biochemical approaches are reviewed which show that the dynamics of the structure of ribosomal RNA (rRNA) play a crucial role in decoding.  相似文献   

13.
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.  相似文献   

14.
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.  相似文献   

15.
Rhodin MH  Dinman JD 《PloS one》2011,6(5):e20048
Yeast ribosomal proteins L11 and S18 form a dynamic intersubunit interaction called the B1b/c bridge. Recent high resolution images of the ribosome have enabled targeting of specific residues in this bridge to address how distantly separated regions within the large and small subunits of the ribosome communicate with each other. Mutations were generated in the L11 side of the B1b/c bridge with a particular focus on disrupting the opposing charge motifs that have previously been proposed to be involved in subunit ratcheting. Mutants had wide-ranging effects on cellular viability and translational fidelity, with the most pronounced phenotypes corresponding to amino acid changes resulting in alterations of local charge properties. Chemical protection studies of selected mutants revealed rRNA structural changes in both the large and small subunits. In the large subunit rRNA, structural changes mapped to Helices 39, 80, 82, 83, 84, and the peptidyltransferase center. In the small subunit rRNA, structural changes were identified in helices 30 and 42, located between S18 and the decoding center. The rRNA structural changes correlated with charge-specific alterations to the L11 side of the B1b/c bridge. These analyses underscore the importance of the opposing charge mechanism in mediating B1b/c bridge interactions and suggest an extensive network of information exchange between distinct regions of the large and small subunits.  相似文献   

16.
Although ribosomal RNAs (rRNAs) comprise the bulk of the ribosome and carry out its main functions, ribosomal proteins also appear to play important structural and functional roles. Many ribosomal proteins contain long, nonglobular domains that extend deep into the rRNA cores. In eukaryotes and Archaea, ribosomal protein L3 contains two such extended domains tethered to a common globular hub, thus providing an excellent model to address basic questions relating to ribosomal protein structure/function relationships. Previous work in our laboratory identified the central ‘W-finger’ extension of yeast L3 in helping to coordinate ribosomal functions. New studies on the ‘N-terminal’ extension in yeast suggest that it works with the W-finger to coordinate opening and closing of the corridor through which the 3′ end of aa-tRNA moves during the process of accommodation. Additionally, the effect of one of the L3 N-terminal extension mutants on the interaction between C75 of the aa-tRNA and G2921 (Escherichia coli G2553) of 25S rRNA provides the first evidence of the effect of a ribosomal protein on aa-tRNA positioning and peptidyltransfer, possibly through the induced fit model. A model is presented describing how all three domains of L3 may function together as a ‘rocker switch’ to coordinate the stepwise processes of translation elongation.  相似文献   

17.
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.  相似文献   

18.
Role of yeast elongation factor 3 in the elongation cycle   总被引:7,自引:0,他引:7  
Investigation of the role of the polypeptide chain elongation factor 3 (EF-3) of yeast indicates that EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA (aa-tRNA) to the ribosome. In the yeast system, the binding of the ternary complex of EF-1 alpha.GTP.aa-tRNA to the ribosome is stoichiometric to the amount of EF-1 alpha. In the presence of EF-3, EF-1 alpha functions catalytically in the above mentioned reaction. The EF-3 effect is manifest in the presence of ATP, GTP, or ITP. A nonhydrolyzable analog of ATP does not replace ATP in this reaction, indicating a role of ATP hydrolysis in EF-3 function. The stimulatory effect of EF-3 is, in many respects, distinct from that of EF-1 beta. Factor 3 does not stimulate the formation of a binary complex between EF-1 alpha and GTP, nor does it stimulate the exchange of EF-1 alpha-bound GDP with free GTP. The formation of a ternary complex between EF-1 alpha.GTP.aa-tRNA is also not affected by EF-3. It appears that the only reaction of the elongation cycle that is stimulated by EF-3 is EF-1 alpha-dependent binding of aa-tRNA to the ribosome. Purified elongation factor 3, isolated from a temperature-sensitive mutant, failed to stimulate this reaction after exposure to a nonpermissive temperature. A heterologous combination of ribosomal subunits from yeast and wheat germ manifest the requirement for EF-3, dependent upon the source of the "40 S" ribosomal subunit. A combination of 40 S subunits from yeast and "60 S" from wheat germ showed the stimulatory effect of EF-3 in polyphenylalanine synthesis (Chakraburtty, K., and Kamath, A. (1988) Int. J. Biochem. 20, 581-590). However, we failed to demonstrate the effect of EF-3 in binding aa-tRNA to such a heterologous combination of the ribosomal subunits.  相似文献   

19.
A1916 in 23S rRNA is located in one of the major intersubunit bridges of the 70S ribosome. Deletion of A1916 disrupts the intersubunit bridge B2a, promotes misreading of the genetic code and is lethal. In a genetic selection for suppressor mutations, two base substitutions in 16S rRNA were recovered that restored viability and also allowed expression of ΔA1916-associated capreomycin resistance. These mutations were G1048A in helix 34 and U1471C in helix 44. Restoration of function is incomplete, however, and the double mutants are slow-growing, defective in subunit association and support high levels of translational errors. In contrast, none of these parameters is affected by the single 16S suppressor mutations. U1471C likely affects another intersubunit contact, bridge B6, suggesting that interactions between different bridges and cross-talk between subunits contributes to ribosomal function.  相似文献   

20.

Background  

The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号