首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In this study we have isolated the chlorophyll a/b-binding proteins from a photosystem I preparation of the green alga Chlamydomonas reinhardtii and characterized them by N-terminal sequencing, fluorescence, and absorption spectroscopy and by immunochemical means. The results indicate that in this organism, the light-harvesting complex of photosystem I (LHCI) is composed of at least seven distinct polypeptides of which a minimum number of three are shown to bind chlorophyll a and b. Both sequence homology and immunological cross-reactivity with other chlorophyll-binding proteins suggest that all of the LHCI polypeptides bind pigments. Fractionation of LHCI by mildly denaturing methods showed that, in contrast to higher plants, the long wavelength fluorescence emission typical of LHCI (705 nm in C. reinhardtii) cannot be correlated with the presence of specific polypeptides, but rather with changes in the aggregation state of the LHCI components. Reconstitution of both high aggregation state and long wavelength fluorescence emission from components that do not show these characteristics confirm this hypothesis.  相似文献   

2.
Chlorophyll proteins of photosystem I   总被引:24,自引:17,他引:24       下载免费PDF全文
Data are presented which suggest the existence of a light-harvesting pigment-protein complex which is functionally and structurally associated with photosystem I (PSI) reaction centers. These observations are based on techniques which allow isolation of PSI using minimal concentrations of Triton X-100. Properties of density and self aggregation allowed purification of a “native” PSI complex.  相似文献   

3.
Photosynthesis Research - Room temperature fluorescence in vivo and its light-induced changes are dominated by chlorophyll a fluorescence excited in photosystem II, F(II), peaking around...  相似文献   

4.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

5.
Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0, A1, and three Fe4S4 clusters, FX, FA, and FB. Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.  相似文献   

6.
In this study, triplet quenching, the major photoprotection mechanism in antenna proteins, has been studied in the light-harvesting complex of photosystem I (LHC-I). The ability of carotenoids bound to LHC-I subunit Lhca4, which is characterized by the presence of the red-most absorption components at wavelength >700 nm, to protect the system through quenching of the chlorophyll triplet states, has been probed, by analyzing the induction of carotenoid triplet formation. We have investigated this process at low temperature, when the funneling of the excitation toward the low-lying excited states of the Chls is stronger, by means of optically detected magnetic resonance (ODMR), which is well-suited for investigation of triplet states in photosynthetic systems. The high selectivity and sensitivity of the technique has made it possible to point out the presence of specific interactions between carotenoids forming the triplet states and specific chlorophylls characterized by red-shifted absorption, by detection of the microwave-induced Triplet minus Singlet (T-S) spectra. The effect of the red forms on the efficiency of triplet quenching was specifically probed by using the Asn47His mutant, in which the red forms have been selectively abolished (Morosinotto, T., Breton, J., Bassi, R., and Croce, R. (2003) J. Biol. Chem. 278, 49223-49229). Lack of the red forms yields into a reduced efficiency of the triplet quenching in LHC-I thus suggesting that the "red Chls" play a role in enhancing triplet quenching in LHC-I and, possibly, in the whole photosystem I.  相似文献   

7.
Photosystem I of higher plants is characterized by a typically long wavelength fluorescence emission associated to its light-harvesting complex I moiety. The origin of these low energy chlorophyll spectral forms was investigated by using site-directed mutagenesis of Lhca1-4 genes and in vitro reconstitution into recombinant pigment-protein complexes. We showed that the red-shifted absorption originates from chlorophyll-chlorophyll (Chl) excitonic interactions involving Chl A5 in each of the four Lhca antenna complexes. An essential requirement for the presence of the red-shifted absorption/fluorescence spectral forms was the presence of asparagine as a ligand for the Chl a chromophore in the binding site A5 of Lhca complexes. In Lhca3 and Lhca4, which exhibit the most red-shifted red forms, its substitution by histidine maintains the pigment binding and, yet, the red spectral forms are abolished. Conversely, in Lhca1, having very low amplitude of red forms, the substitution of Asn for His produces a red shift of the fluorescence emission, thus confirming that the nature of the Chl A5 ligand determines the correct organization of chromophores leading to the excitonic interaction responsible for the red-most forms. The red-shifted fluorescence emission at 730 nm is here proposed to originate from an absorption band at approximately 700 nm, which represents the low energy contribution of an excitonic interaction having the high energy band at 683 nm. Because the mutation does not affect Chl A5 orientation, we suggest that coordination by Asn of Chl A5 holds it at the correct distance with Chl B5.  相似文献   

8.
S Kim  C A Sacksteder  K A Bixby  B A Barry 《Biochemistry》2001,40(50):15384-15395
In oxygenic photosynthesis, photosystem I (PSI) conducts light-driven electron transfer from plastocyanin to ferredoxin. The reactions are initiated when the primary chlorophyll donor, P(700), is photooxidized. P(700) is a chlorophyll dimer ligated by the core subunits psaA and psaB. A difference Fourier transform infrared spectrum, associated with P(700)(+)-minus-P(700), can be acquired using PSI from the cyanobacterium Synechocystis sp. PCC 6803. This spectrum reflects contributions from oxidation-sensitive modes of chlorophyll, as well as from oxidation-induced structural changes in amino acid residues and the peptide backbone. Oxidation-induced structural changes may play a role in the facilitation and control of electron-transfer reactions involving the primary donor. In this paper, we report that photooxidation of P(700) in cyanobacterial PSI perturbs a cysteine residue. At 264 and 80 K, a downshift of a SH stretching vibration from 2560 to 2551 cm(-1) is observed. Such a downshift is consistent with an increase in hydrogen bonding, with a change in C-S-H conformation, or with an electric field effect. Deuterium exchange experiments were also performed. While the perturbed cysteine is in a protein region that is resistant to exchange, other (2)H-sensitive vibrational chl and amino acid bands were observed. From the (2)H exchange experiments, we conclude that photooxidation of P(700) perturbs internal or bound water molecules in PSI and that the P(700)(+)-minus-P(700) spectrum is (2)H exchange-sensitive. The results are consistent with structural complexity in the PSI primary donor, as previously suggested [Kim, S., and Barry, B. A. (2000) J. Am. Chem. Soc. 122, 4980-4981]. Possible explanations, including a partial enolization of P(700)(+), are discussed.  相似文献   

9.
The use of Triton X-100 to solubilize membrane fragments from Anabaena flos-aquae in conjunction with DEAE cellulose chromatography allows the separation of three green fractions. Fraction 1 is detergent-solubilized chlorophyll, and Fraction 2 contains one polypeptide in the 15 kdalton area. Fraction 3, which contains most of the chlorophyll and shows P-700 and photosystem I activity, shows by SDS gel electrophoresis varying polypeptide profiles which reflect the presence of four fundamental bands as well as varying amounts of other polypeptides which appear to be aggregates containing the 15 kdalton polypeptide. The four fundamental bands are designated Band I at 120, Band II at 52, Band III at 46, and Band IV at 15 kdaltons. Band I obtained using 0.1% SDS contains chlorophyll and P-700 associated with it. When this band is cut out and rerun, the 120 kdalton band is lost, but significant increases occur in the intensities of Bands II, III, and IV as well as other polypeptides in the 20-30 kdalton range. The use of 1% Triton X-100 coupled with sucrose density gradient centrifugation allows the separation of three green bands at 10, 25 and 40% sucrose. The 10% layer contains a major polypeptide which appears to be Band IV. The 25 and 40% layers show essentially similar polypeptide profiles, resembling Fraction 3 in this regard, except that the 40% layer shows a marked decrease in Band III. Treatment of the material layering at the 40% sucrose level with a higher (4%) concentration of Triton X-100 causes a loss (disaggregation) of the polypeptides occurring in the 60-80 kdalton region and in increase in the lower molecular weight polypeptides. Thus, aggregation of the lower molecular weight polypeptides accounts for the variability seen in the electrophoresis patterns. Possible relations of the principal polypeptides to the known photochemical functions in the original membrane are discussed.  相似文献   

10.
Saito K  Ishikita H 《Biophysical journal》2011,101(8):2018-2025
The primary electron donor P700 in photosystem I is composed of two chlorophylls, PA and PB. P700 forms the cationic [PA/PB]•+ state as a result of light-induced electron transfer. We obtained a PA•+/PB•+ ratio of 28:72 and a spin distribution of 22:78 for the entire PSI protein-pigment complex. By considering the influence of the protein components on the redox potential for one-electron oxidation of PA/PB monomers, we found that the following three factors significantly contributed to a large PB•+ population relative to PA•+: 1), Thr-A743 forming a H-bond with PA; 2), PA as a chlorophyll a epimer; and 3), a conserved PsaA/PsaB pair, the Arg-A750/Ser-B734 residue. In addition, 4), the methyl-ester groups of the accessory chlorophylls A−1A/A−1B significantly stabilized the cationic [PA/PB]•+ state and 5), the methyl-ester group orientations were completely different in A−1A and A−1B as seen in the crystal structure. When the methyl-ester group was rotated, the spin-density distribution over PA/PB ranged from 22:78 to 15:85.  相似文献   

11.
There are four LhcII genes of Dunaliella salina have been submitted to the database of GenBank. However, little is known about Lhca genes of this green alga, although this knowledge might be available to study the composition and phylogenesis of Lhc gene family. Recently, one Lhca gene was been cloned from the green alga D. salina by PCR amplification using degenerate primers. This cDNA, designated as DsLhca1, contains an open reading frame encoded a protein of 222 amino acids with a calculated molecular mass of 27.8 kDa. DsLhca1 is predicted to contain three transmembrane domains and a N-terminal chloroplast transit peptide (cTP) with length of 33 amino acids. The genomic sequence of DsLhca1 is composed of five introns. The deduced polypeptide sequence of this gene showed a lower degree of identity (less than 30%) with LHCII proteins from D. salina. But its homology to Lhca proteins of other algae (Volvox carteri Lhca_AF110786) was higher with pairwise identities of up to 67.1%. Phylogenetic analysis indicated that DsLhcal protein cannot be assigned to any types of Lhca proteins in higher plants or in Chlamydomonas reinhardtii.  相似文献   

12.
Li  Y.  Vella  N.  Chen  M. 《Photosynthetica》2018,56(1):306-315
Photosynthetica - Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation...  相似文献   

13.
Photosynthesis Research - Diatoms are dominant phytoplankton in aquatic environments and have unique light-harvesting apparatus, fucoxanthin chlorophyll a/c-binding protein (FCP). Diatom...  相似文献   

14.
Fluorescence emission spectra excited at 514 and 633 nm were measured at -196 degrees C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at -196 degrees C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at -196 degrees C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at -196 degrees C.  相似文献   

15.
Vasil'ev S  Bruce D 《The Plant cell》2004,16(11):3059-3068
The efficiency of oxygenic photosynthesis depends on the presence of core antenna chlorophyll closely associated with the photochemical reaction centers of both photosystem II (PSII) and photosystem I (PSI). Although the number and overall arrangement of these chlorophylls in PSII and PSI differ, structural comparison reveals a cluster of 26 conserved chlorophylls in nearly identical positions and orientations. To explore the role of these conserved chlorophylls within PSII and PSI we studied the influence of their orientation on the efficiency of photochemistry in computer simulations. We found that the native orientations of the conserved chlorophylls were not optimal for light harvesting in either photosystem. However, PSII and PSI each contain two highly orientationally optimized antenna chlorophylls, located close to their respective reaction centers, in positions unique to each photosystem. In both photosystems the orientation of these optimized bridging chlorophylls had a much larger impact on photochemical efficiency than the orientation of any of the conserved chlorophylls. The differential optimization of antenna chlorophyll is discussed in the context of competing selection pressures for the evolution of light harvesting in photosynthesis.  相似文献   

16.
The (18)O exchange rates for the substrate water bound in the S(3) state were determined in different photosystem II sample types using time-resolved mass spectrometry. The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria. For each sample type, two kinetically distinct isotopic exchange rates could be resolved, indicating that the biphasic exchange behavior for the substrate water is inherent to the O(2)-evolving catalytic site in the S(3) state. However, the fast phase of exchange became somewhat slower (by a factor of approximately 2) in NaCl-washed membrane fragments and core complexes from spinach in which the 16- and 23-kDa extrinsic proteins have been removed, compared with the corresponding rate for the intact samples. For CaCl(2)-washed membrane fragments in which the 33-kDa manganese stabilizing protein (MSP) has also been removed, the fast phase of exchange slowed down even further (by a factor of approximately 3). Interestingly, the slow phase of exchange was little affected in the samples from spinach. For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected. Nevertheless, within the experimental error, nearly the same exchange rates were measured for thylakoid samples made from wild type and an MSP-lacking mutant of Synechocystis PCC 6803. This result could indicate that the MSP has a slightly different function in eukaryotic organisms compared with prokaryotic organisms. In all samples, however, the differences in the exchange rates are relatively small. Such small differences are unlikely to arise from major changes in the metal-ligand structure at the catalytic site. Rather, the observed differences may reflect subtle long range effects in which the exchange reaction coordinates become slightly altered. We discuss the results in terms of solvent penetration into photosystem II and the regional dielectric around the catalytic site.  相似文献   

17.
Stationary delayed fluorescence (DF) of chlorophyll in isolated membrane preparations from thermophilic cyanobacterium Synechococcus elongatus was investigated as a function of temperature. Two peaks at different temperatures were observed. The low-temperature peak (54-60 degrees C) coincided with the main maximum of the thermally-induced delayed fluorescence of chlorophyll in intact cells and PSII-particles with active oxygen-evolving system. The high-temperature peak (78 degrees C) coincided with the minor band of delayed light emitted by intact cells. It was also observed in the delayed fluorescence emission from a PSI-enriched fraction preparation. The intensities of the DF peaks were dependent on the presence of inhibitors, donors and acceptors that cause specific effects on electron transport of the two photosystems. The low-temperature and high-temperature peaks were related to PSII and PSI, respectively. The manifestation of delayed fluorescence from PSI and PSII at different temperatures seems to be a specific property of thermophilic cyanobacteria. The reason for this may be a high thermal stability of the photosystems and the lack of the PSII antenna complex in isolated membranes. Consequently, the relative yield of delayed fluorescence from PSI markedly increases. Thermally-induced fluorescence seen in membranes of cyanobacteria showed a high sensitivity to structural and functional membrane alterations induced by pH changes, different electron transport stabilizing agents or different concentrations of MgCl2.  相似文献   

18.
A review of the structural properties of the photosystem II chlorophyll binding proteins, CP47 and CP43, is given and a model of the transmembrane helical domains of CP47 has been constructed. The model is based on (i) the amino acid sequence of the spinach protein, (ii) an 8 A three-dimensional electron density map derived from electron crystallography and (iii) the structural homology which the membrane spanning region of CP47 shares with the six N-terminal transmembrane helices of the PsaA/PsaB proteins of photosystem I. Particular emphasis has been placed on the position of chlorophyll molecules assigned in the 8 A three-dimensional map of CP47 (K.-H. Rhee, E.P. Morris, J. Barber, W. Kühlbrandt, Nature 396 (1998) 283-286) relative to histidine residues located in the transmembrane regions of this protein which are likely to form axial ligands for chlorophyll binding. Of the 14 densities assigned to chlorophyll, the model predicted that five have their magnesium ions within 4 A of the imidazole nitrogens of histidine residues. For the remaining seven histidine residues the densities attributed to chlorophylls were within 4-8 A of the imidazole nitrogens and thus too far apart for direct ligation with the magnesium ion within the tetrapyrrole head group. Improved structural resolution and reconsiderations of the orientation of the porphyrin rings will allow further refinement of the model.  相似文献   

19.
The role of natural thylakoid membrane confinements in architecting the robust structural and electrochemical properties of PSI is not fully understood. Most PSI studies till date extract the proteins from their natural confinements that can lead to non-native conformations. Recently our group had successfully reconstituted PSI in synthetic lipid membranes using detergent-mediated liposome solubilizations. In this study, we investigate the alterations in chlorophylls and carotenoids interactions and reorganization in PSI based on spectral property changes induced by its confinement in anionic DPhPG and zwitterionic DPhPC phospholipid membranes. To this end, we employ a combination of absorption, fluorescence, and circular dichroism (CD) spectroscopic measurements. Our results indicate unique activation and alteration of photoresponses from the PSI carotenoid (Car) bands in PSI-DPhPG proteoliposomes that can tune the Excitation Energy Transfer (EET), otherwise absent in PSI at non-native environments. Specifically, we observe broadband light harvesting via enhanced absorption in the otherwise non-absorptive green region (500–580 nm) of the Chlorophylls (Chl) along with ~64% increase in the full-width half maximum of the Qy band (650–720 nm). The CD results indicate enhanced Chl-Chl and Chl-Car interactions along with conformational changes in protein secondary structures. Such distinct changes in the Car and Chl bands are not observed in PSI confined in DPhPC. The fundamental insights into membrane microenvironments tailoring PSI subunits reorganization and interactions provide novel strategies for tuning photoexcitation processes and rational designing of biotic-abiotic interfaces in PSI-based photoelectrochemical energy conversion systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号