首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
泛素在真核生物体内广泛存在,泛素化修饰是转录后的修饰方式之一;组蛋白是染色质的主要成分之一,与基因的表达有密切关系。组蛋白的泛素化修饰与经典的蛋白质的泛素调节途径不同,不会导致蛋白质的降解,但是能够招募核小体到染色体、参与X染色体的失活、影响组蛋白的甲基化和基因的转录。组蛋白的去泛素化修饰同样与染色质的结构及基因表达密切相关。组蛋白的泛素化和磷酸化、乙酰化、甲基化修饰之间还存在协同和级联效应。  相似文献   

2.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

3.
组蛋白是染色质中主要的蛋白质组分,经过复杂的翻译后修饰,主要包括乙酰化、甲基化、磷酸化、泛素化和ADP-核糖基化后,会改变染色质的结构及功能特性。组蛋白H3的磷酸化是高度保守的,发生在有丝分裂和减数分裂中特定的时期和染色体部位。在真核生物的不同物种中,组蛋白的磷酸化在染色体上的分布和起始时期是不同的,但常在中期磷酸化水平达到最高。在有丝分裂或减数分裂将结束的时候,H3普遍发生去磷酸化现象。不同组蛋白的共价修饰有不同的表观遗传学效应。  相似文献   

4.
组蛋白变体及组蛋白替换   总被引:2,自引:0,他引:2  
吴南  桂建芳 《遗传》2006,28(4):493-500
组蛋白作为核小体的基本组分,是染色质的结构和功能必需的。对于不同状态的染色质,核小体中会组装入相应的组蛋白变体,并且各种组蛋白变体的尾部也能发生多种修饰。这些变体通过改变核小体的空间构象和稳定性,决定基因转录的激活或沉默,DNA的修复,染色体的异染色化等。在组蛋白替换过程中,组蛋白变体是通过相应的染色质重构复合物组装入核小体,不同的变体有着不同的组装途径。对组蛋白变体的研究是近年来表观遗传学新的研究热点,也是对“组蛋白密码”的新的诠释。并且,组蛋白替换揭示了DNA-组蛋白相互作用变化的一种新的机制。

  相似文献   

5.
对去除DNA、组蛋白和大部分非组蛋白的大麦(Hordeum vulgare)细胞核和染色体间接免疫荧光标记实验结果表明:抗肌球蛋白抗体的荧光标记弥散分布在整个细胞核和染色体上;进一步应用免疫胶体金技术分析肌球蛋白在细胞核和染色体的分布情况,发现在染色体中散布着大量的胶体金颗粒;间期细胞核中胶体金颗粒主要分布在核仁和染色质中。上述实验结果表明:肌球蛋白是细胞核及染色体非组蛋白组成成分。本文还对肌球蛋白在细胞核和染色体中的分布规律进行了讨论。  相似文献   

6.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

7.
磷酸化组蛋白H3在小麦有丝分裂与减数分裂中的分布   总被引:2,自引:0,他引:2  
在细胞周期中 ,与染色质凝集偶联的一类组蛋白修饰是组蛋白H3的磷酸化。运用H3_Ser 10磷酸化的特异性抗体 ,通过间接免疫荧光标记检测了磷酸化组蛋白H3在小麦 (TriticumaestivumL .)有丝分裂与减数分裂细胞中的分布。有丝分裂时 ,H3磷酸化起始于早前期 ,消失于末期 ,在中期与后期 ,H3磷酸化主要分布在着丝粒两侧的异染色质区。减数分裂时 ,H3磷酸化起始于细线期向偶线期转换时 ,并且从前期Ⅰ到后期Ⅰ保持均一分布于整个染色体上 ,直到末期Ⅰ消失 ,而中期Ⅱ与后期Ⅱ在着丝粒两侧的异染色质区的信号略强于染色体臂 ,直至消失于末期Ⅱ。磷酸化组蛋白H3在两类细胞分裂中的不同分布暗示这种保守的翻译后修饰可能发挥着除参与染色体凝集外的更复杂的作用。  相似文献   

8.
为便于读者了解使用,现将中科院上海文献情报中心最新到馆的有关分子生物学方面的新书介绍如下: 1.《染色体和染色质》(Chromosomes and chromatin),由Adolph, K. W.编者,1988年出版,全书分三卷。其各卷的内容分别为:卷一;染色质纤维的组蛋白和小范围组织:组蛋白修饰和染色质  相似文献   

9.
在细胞周期中, 与染色质凝集偶联的一类组蛋白修饰是组蛋白H3的磷酸化.运用H3-Ser 10磷酸化的特异性抗体,通过间接免疫荧光标记检测了磷酸化组蛋白H3在小麦(Triticum aestivum L.)有丝分裂与减数分裂细胞中的分布.有丝分裂时,H3磷酸化起始于早前期,消失于末期,在中期与后期,H3磷酸化主要分布在着丝粒两侧的异染色质区.减数分裂时,H3磷酸化起始于细线期向偶线期转换时,并且从前期Ⅰ到后期Ⅰ保持均一分布于整个染色体上,直到末期Ⅰ消失,而中期Ⅱ与后期Ⅱ在着丝粒两侧的异染色质区的信号略强于染色体臂,直至消失于末期Ⅱ.磷酸化组蛋白H3在两类细胞分裂中的不同分布暗示这种保守的翻译后修饰可能发挥着除参与染色体凝集外的更复杂的作用.  相似文献   

10.
刘峰涛 《生命的化学》2004,24(2):108-109
真核细胞的染色体分为异染色质和常染色质。异染色质的形成和传播是通过对组蛋白的甲基化、乙酰化的修饰,提供HP1的识别位点实现的。过去认为与异染色质结合的蛋白质是固定的,现有研究表明与异染色质结合的蛋白质是流动的,因此转录激活因子与异染色质蛋白的竞争,可能决定了异染色质的开放,并为基因的转录提供了前提。  相似文献   

11.
哺乳动物受精过程中染色体构象发生剧烈的变化.来自精子高度凝缩的染色质在卵母细胞胞质环境中解凝缩,与雌性染色质融合,发生基因组重编程共同构建合子基因组,激活胚胎基因组转录,获得发育的全能性,并进一步发育成完整的胚胎.表观遗传调节机制在这一过程中起重要作用,其中主要包括DNA甲基化、组蛋白甲基化、组蛋白乙酰化及组蛋白替代,这些修饰形式改变了染色体的空间构象以及与转录调节因子的结合模式,调控染色体的活性,进而调节胚胎的发生发育.  相似文献   

12.
高等真核细胞染色质是由DNA、组蛋白、非组蛋白染色体蛋白(简称NHC蛋白)组成,有人提出在染色质的结构中还含有少量的RNA,即所谓的cRNA,然而这还是一个争论中的问题。各组成成份一起不仅维持着细胞周期中染色质的结构,而且通过各成分的有机联系和相互作用,也控制着细胞功能的表现。作为研究染色质结构与功能的起始点之一,我们以小牛胸腺为材料,对染色质的各组成成分的比值进行了定量分析,为通过染色质的重组研究染色质的结构与功能提供有关数据。  相似文献   

13.
张伟  明镇寰 《生命科学》2006,18(1):80-83
组蛋白乙酰化和去乙酰化可调节染色体的多种功能,例如基因表达和染色体分离等。研究发现,组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)可诱导分化、生长阻断和肿瘤细胞凋亡,目前HDACIs正作为抗肿瘤药物进行临床试验,在肿瘤治疗中显示出具有较好的应用前景。然而,人们对于HDACIs在生物体内是如何发挥作用以及不同类型细胞为何会有不同的应答途径却关注甚少。本综述通过讨论HDACIs对周期和非周期细胞中组蛋白去乙酰化酶的抑制结果,来阐明组蛋白乙酰化模式的动力学特征,特别是对基因组异染色质的作用。  相似文献   

14.
染色质是人类遗传信息的载体,位于染色质上的基因在不同的时空条件下的精准表达调控与DNA的可接触性和染色质相关复合物的密切关联。组蛋白是染色质的重要组成成份,组蛋白上的多种化学修饰,例如乙酰化、甲基化和磷酸化等构成组蛋白密码,实时调控染色质的开放程度及转录调节复合物与染色质的结合,导致基因转录的激活或抑制。随着高分辨率质谱和专一性化学修饰抗体制备技术的提高,一系列新型组蛋白赖氨酸酰基化修饰,例如巴豆酰化、乳酸酰化和琥珀酰化等被发现,进一步扩展了组蛋白密码的多样性,显著增加了组蛋白密码调控基因转录的复杂性。本文着重概述了新近发现的赖氨酸巴豆酰化、乳酸酰化、琥珀酰化、异丁酰化、甲基丙烯酰化和异烟酰化等新型组蛋白赖氨酸酰基化修饰的书写、阅读及擦除的动态调控分子机制,总结了这些组蛋白酰基化修饰在基因表达中的功能及调控机制,阐述了新型组蛋白酰基化修饰与人类疾病的关联,提出新型组蛋白酰基化修饰研究面临的挑战和未来研究的方向。  相似文献   

15.
组蛋白赖氨酸甲基化修饰与肿瘤   总被引:2,自引:0,他引:2  
郑杰 《生命科学》2008,20(3):442-446
对组蛋白甲基化修饰认识已有相当长的时间,但直到最近几年由于组蛋白甲基化修饰酶的发现才使人们逐渐认识到组蛋白甲基化修饰有广泛的生物学功能,像异染色质形成、X染色体失活、转录调节、干细胞的维持和分化等,组蛋白甲基化修饰的改变与某些人类疾病和肿瘤也有一定关系。组蛋白修饰是可逆性的,这为某些疾病的治疗提供了新的可能。  相似文献   

16.
收集海洋游仆虫(Euplotes vannus)的细胞,制备其染色质。稀酸抽提染色质得到的组蛋白经聚丙烯酰胺凝胶电泳、SDS-聚丙烯酰胺梯度凝胶电泳、等电点聚焦和氨基酸分析等方法测定,其核染色质中组蛋白占核总蛋白的69.6%;DNA:RNA:组蛋白:非组蛋白为1∶0.022∶1.1∶0.047。染色质的全组蛋白由16种氨基酸组成,碱性氨基酸与酸性氨基酸之比为1.06∶1,是一种弱碱性蛋白质。等电点为pH8.1—9.15,分子量为10,500—22,000道尔顿。  相似文献   

17.
组蛋白甲基化研究进展   总被引:5,自引:0,他引:5  
组蛋白甲基化是表观遗传修饰方式中的一种,参与异染色质形成、基因印记、X染色体失活和基因转录调控.组蛋白甲基化过程的异常参与多种肿瘤的发生.既往认为组蛋白甲基化是稳定的表观遗传标记,而组蛋白去甲基化酶的发现对这一观点提出了挑战,也为进一步深入研究组蛋白修饰提供新的途径.  相似文献   

18.
芽殖酵母(Saccharomyces cerevisiae)和裂殖酵母(Schizosaccharomyces pombe)是用来研究异染色质形成、细胞周期、DNA复制等重要细胞功能的理想单细胞真核生物.本文主要介绍这2种酵母中异染色质形成的机制.异染色质是一种抑制基因转录和DNA重组的特殊染色质结构.尽管在芽殖酵母和裂殖酵母中异染色质形成都需要组蛋白修饰,但异染色质建立的机制不同.在芽殖酵母中参与异染色质形成的主要蛋白是Sir1-4蛋白(其中Sir2为组蛋白H3去乙酰化酶),而组蛋白H3赖氨酸9甲基化酶Clr4和异染色质蛋白Swi6在裂殖酵母异染色质形成中起关键的作用.在这两个酵母中,参与异染色质形成的组蛋白修饰蛋白由DNA结合蛋白招募到异染色质.此外,裂殖酵母也利用RNA干扰系统招募组蛋白修饰蛋白.  相似文献   

19.
组蛋白变体(histone variant)是常规组蛋白的变异体,在染色质的特定位置或特定生物学事件中替换常规组蛋白,调控染色质结构以及相关生物学过程。组蛋白伴侣(histone chaperone)是指可以结合组蛋白,运送组蛋白参与染色质组装和去组装等重要功能的蛋白质。综述了几种主要组蛋白变体在真核生物染色质高级结构的形成及维持、细胞编程与重编程的表观遗传机制等生命进程中发挥的重要作用,以及这些组蛋白变体与其特征伴侣之间特异识别的分子机制。  相似文献   

20.
本文比较了五龄三天及眠期的蓖麻蚕后丝腺体染色质的结构蛋白与转录活性,结果表明非组蛋白的单相凝胶电泳有显著的变化,转录活性亦有差异。染色质经DNase Ⅱ处理后分离的可溶性染色质与不溶部分的染色质结构蛋白电泳图谱不同。对重组染色质的转录活性进行了研究,初步结果表明同源和异源的组蛋白对DNA转录有抑制作用,去H_1的组蛋白抑制作用显著减少。非组蛋白能恢复部分被抑制的转录活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号