首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.  相似文献   

2.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

3.
Eukaryotic DNA polymerase delta and its accessory proteins are essential for SV40 DNA replication in vitro. A multi-subunit protein complex, replication factor C (RF-C), which is composed of subunits with apparent molecular weights of 140,000, 41,000, and 37,000, has primer/template binding and DNA-dependent ATPase activities. UV-cross-linking experiments demonstrated that the Mr = 140,000 subunit recognizes and binds to the primer-template DNA, whereas the Mr = 41,000 polypeptide binds ATP. Assembly of a replication complex at a primer-template junction has been studied in detail with synthetic, hairpin DNAs. Following glutaraldehyde fixation, a gel shift assay demonstrated that RF-C alone forms a weak binding complex with the hairpin DNA. Addition of ATP or its nonhydrolyzable analogue, ATP gamma S, increased specific binding to the DNA. Footprinting experiments revealed that RF-C recognizes the primer-template junction, covering 15 bases of the primer DNA from the 3'-end and 20 bases of the template DNA. Another replication factor, proliferating cell nuclear antigen (PCNA) binds to RF-C and the primer-template DNA forming a primer recognition complex and extends the protected region on the duplex DNA. This RF-C.PCNA complex has significant single-stranded DNA binding activity in addition to binding to a primer-template junction. However, addition of another replication factor, RF-A, completely blocked the nonspecific, single-stranded DNA binding by the RF-C.PCNA complex. RF-A therefore functions as a specificity factor for primer recognition. In the absence of RF-C, DNA polymerase delta (pol delta) and PCNA form a complex at the primer-template junction, protecting exactly the same site as the primer recognition complex. Addition of RF-C to this complex produced a higher order complex which is unstable unless its formation is coupled with translocation of pol delta. These results suggest that the sequential binding of RF-C, PCNA, and pol delta to a primer-template junction might directly account for the initiation of leading strand DNA synthesis at a replication origin. We demonstrate this directly in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1961-1968).  相似文献   

4.
Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed.  相似文献   

5.
DNA replication from the SV40 origin can be reconstituted in vitro using purified SV40 large T antigen, cellular topoisomerases I and II, replication factor A (RF-A), proliferating cell nuclear antigen (PCNA), replication factor C (RF-C), and a phosphocellulose fraction (IIA) made from human cell extracts (S100). Fraction IIA contains all DNA polymerase activity required for replication in vitro in addition to other factors. A newly identified factor has been purified from fraction IIA. This factor is required for complete reconstitution of SV40 DNA replication and co-purifies with a PCNA-stimulated DNA polymerase activity. This DNA polymerase activity is sensitive to aphidicolin, but is not inhibited by butylanilinodeoxyadenosine triphosphate or by monoclonal antibodies which block synthesis by DNA polymerase alpha. The polymerase activity is synergistically stimulated by the combination of RF-A, PCNA, and RF-C in an ATP-dependent manner. Purified calf thymus polymerase delta can fully replace the purified factor in DNA replication assays. We conclude that this factor, required for reconstitution of SV40 DNA replication in vitro, corresponds to human DNA polymerase delta.  相似文献   

6.
The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  相似文献   

7.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

8.
By using a complementation assay that enabled DNA polymerase delta and DNA polymerase epsilon to replicate a singly-DNA primed M13 DNA in the presence of proliferating cell nuclear antigen (PCNA) and Escherichia coli single-stranded DNA binding protein (SSB), we have purified from calf thymus in a five step procedure a multipolypeptide complex with molecular masses of polypeptides of 155, 70, 60, 58, 39 (doublet), 38 (doublet) and 36 kDa. The protein is very likely replication factor C (Tsurimoto, T. and Stillman, B. (1989) Mol. Cell. Biol. 9, 609-619). This conclusion is based on biochemical and physicochemical data and the finding that it contains a DNA stimulated ATPase which is under certain conditions stimulated by PCNA. Together RF-C, PCNA and ATP convert DNA polymerases delta and epsilon to holoenzyme forms, which were able to replicate efficiently SSB-covered singly-DNA primed M13 DNA. Calf thymus RF-C could form a primer recognition complex on a 3'-OH primer terminus in the presence of calf thymus PCNA and ATP. Holoenzyme complexes of DNA polymerase delta and epsilon could be isolated suggesting that these enzymes directly interact with the auxiliary proteins in a similar way. Under optimal replication conditions on singly-DNA primed M13 DNA the DNA synthesis rate of DNA polymerase delta was higher than of DNA polymerase epsilon. Based on these functional date possible roles of these two DNA polymerases in eukaryotic DNA replication are discussed.  相似文献   

9.
Replication factor C (RF-C) is a eukaryotic heteropentameric protein required for DNA replication and repair processes by loading proliferating cell nuclear antigen (PCNA) onto DNA in an ATP-dependent manner. Prior to loading PCNA, RF-C binds to DNA. This binding is thought to be restricted to a specific DNA structure, namely to a primer/template junction. Using the electron microscope we have examined the affinity of human heteropentameric RF-C and the DNA-binding region within the large subunit of RF-C from Drosophila melanogaster (dRF-Cp140) to heteroduplex DNA. The electron microscopic data indicate that both human heteropentameric RF-C and the DNA-binding region within dRF-Cp140 are sequestered by single-stranded DNA. No preferential affinity for the 3' or 5' transition points from single- to double-stranded DNA was evident.  相似文献   

10.
Saccharomyces cerevisiae replication factor C (RF-C) was purified 25,000-fold from a protease-deficient strain of yeast. RF-C is a complex of 6 subunits of 130, 86, 41, 40, 37, and 27 kDa. None of the subunits are related through proteolysis or differential phosphorylation. The assay for RF-C used as a substrate single-stranded DNA binding protein-coated singly primed single-stranded mp 18 DNA. This DNA was poorly replicated by yeast DNA polymerase delta with or without its cofactor proliferating cell nuclear antigen (PCNA). In the presence of RF-C, however, replication of the template proceeded efficiently when both ATP and PCNA were present as well. Formation of this replication-proficient complex of DNA polymerase delta required an input of one to two molecules of PCNA per replicated DNA molecule. DNA polymerase epsilon also formed an ATP-dependent complex with PCNA and RF-C. RF-C has a DNA-dependent ATPase activity, equally active on single-stranded and primed single-stranded mp18 DNA. Addition of PCNA stimulated the ATPase of RF-C on primed but not on unprimed DNA, indicating that the increase in ATPase was due to PCNA-enhanced binding of RF-C to the primer terminus. Calf thymus PCNA also stimulated the ATPase activity of yeast RF-C and participated in holoenzyme formation with DNA polymerase delta. These results attest to the structural and functional homology between yeast and mammalian cells for these components of the replication machinery.  相似文献   

11.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

12.
Unique single-stranded regions of simian virus 40 DNA, phage M13 virion DNA, and several homopolymers were used as templates for the synthesis of (p)ppRNA-DNA chains by CV-1 cell DNA primase-DNA polymerase alpha. Intact RNA primers, specifically labeled with an RNA capping enzyme, were typically 6 to 8 ribonucleotides long, although their lengths ranged from 1 to 9 bases. The fraction of intact RNA primers 1 to 4 ribonucleotides long was 14 to 73%, depending on the template used. RNA primer length varied among primers initiated at the same nucleotide, as well as with primers initiated at different sites. Thus, the size of an RNA primer depended on template sequence. Initiation sites were identified by mapping 5' ends of nascent RNA-DNA chains on the template sequence, identifying the 5'-terminal ribonucleotide, and partially sequencing one RNA primer. A total of 56 initiation events were identified on simian virus 40 DNA, an average of 1 every 16 bases. Some sites were preferred over others. A consensus sequence for initiation sites consisted of either 3'-dCTTT or 3'-dCCC centered within 7 to 25 pyrimidine-rich residues; the 5' ends of RNA primers were complementary to the dT or dC. High ATP/GTP ratios promoted initiation of RNA primer synthesis at 3'-dCTTT sites, whereas low ATP/GTP ratios promoted initiation at 3'-dCCC sites. Similarly, polydeoxythymidylic acid and polydeoxycytidylic acid were the only effective homopolymer templates. Thus, both template sequence and ribonucleoside triphosphate concentrations determine which initiation sites are used by DNA primase-DNA polymerase alpha. Remarkably, initiation sites selected in vitro were strikingly different from initiation sites selected during simian virus 40 DNA replication in vivo.  相似文献   

13.
The current view of DNA replication in eukaryotes predicts that DNA polymerase alpha (pol alpha)-primase synthesizes the first 10-ribonucleotide-long RNA primer on the leading strand and at the beginning of each Okazaki fragment on the lagging strand. Subsequently, pol alpha elongates such an RNA primer by incorporating about 20 deoxynucleotides. pol alpha displays a low processivity and, because of the lack of an intrinsic or associated 3'--> 5' exonuclease activity, it is more error-prone than other replicative pols. Synthesis of the RNA/DNA primer catalyzed by pol alpha-primase is a critical step in the initiation of DNA synthesis, but little is known about the role of the DNA replication accessory proteins in its regulation. In this paper we provide evidences that the single-stranded DNA-binding protein, replication protein A (RP-A), acts as an auxiliary factor for pol alpha playing a dual role: (i) it stabilizes the pol alpha/primer complex, thus acting as a pol clamp; and (ii) it significantly reduces the misincorporation efficiency by pol alpha. Based on these results, we propose a hypothetical model in which RP-A is involved in the regulation of the early events of DNA synthesis by acting as a "fidelity clamp" for pol alpha.  相似文献   

14.
M G Kramer  S A Khan    M Espinosa 《The EMBO journal》1997,16(18):5784-5795
Plasmid rolling circle replication involves generation of single-stranded DNA (ssDNA) intermediates. ssDNA released after leading strand synthesis is converted to a double-stranded form using solely host proteins. Most plasmids that replicate by the rolling circle mode contain palindromic sequences that act as the single strand origin, sso. We have investigated the host requirements for the functionality of one such sequence, ssoA, from the streptococcal plasmid pLS1. We used a new cell-free replication system from Streptococcus pneumoniae to investigate whether host DNA polymerase I was required for lagging strand synthesis. Extracts from DNA polymerase I-deficient cells failed to replicate, but this was corrected by adding purified DNA polymerase I. Efficient DNA synthesis from the pLS1-ssoA required the entire DNA polymerase I (polymerase and 5'-3' exonuclease activities). ssDNA containing the pLS1-ssoA was a substrate for specific RNA polymerase binding and a template for RNA polymerase-directed synthesis of a 20 nucleotide RNA primer. We constructed mutations in two highly conserved regions within the ssoA: a six nucleotide conserved sequence and the recombination site B. Our results show that the former seemed to function as a terminator for primer RNA synthesis, while the latter may be a binding site for RNA polymerase.  相似文献   

15.
DNA polymerase alpha cofactors C1C2 function as primer recognition proteins   总被引:10,自引:0,他引:10  
Most, if not all, of the DNA polymerase alpha activity in monkey and human cells was complexed with at least two proteins, C1 and C2, that together stimulated the activity of this enzyme from 180- to 1800-fold on low concentrations of denatured DNA, parvovirus DNA, M13, and phi X174 DNA or RNA-primed DNA templates, and poly(dT):oligo(dA) or oligo(rA). These primer-template combinations, which have from 200 to 5000 bases of template/primer, were then 7- to 50-fold more effective as substrates than DNase I-activated DNA. C1C2 specifically stimulated alpha polymerase, and only from the same cell type. Alpha X C1C2-polymerase reconstituted from purified alpha polymerase and the C1C2 cofactor complex behaved the same as native alpha X C1C2-polymerase and C1C2 had no effect on the sensitivity of alpha polymerase to aphidicolin, dideoxythymidine triphosphate, and N-ethylmaleimide. In the presence of substrates with a high ratio of single-stranded DNA template to either DNA or RNA primar, C1C2 increased the rate of DNA synthesis by decreasing the Km for the DNA substrate, decreasing the Km for the primer itself, increasing the use of shorter primers, and stimulating incorporation of the first deoxyribonucleotide. In contrast, C1C2 had no effect on the Km values for deoxyribonucleotide substrates (which were about 150-fold higher than for DNA replication in isolated nuclei), the ability of specific DNA sequences to arrest alpha polymerase, or the processivity of alpha polymerase. Accordingly, C1C2 function as primer recognition proteins. However, C1C2 did not reduce the comparatively high Km values or stimulate DNA synthesis by alpha polymerase on lambda DNA ends and DNase I-activated DNA, substrates with 12 and about 30-70 bases of template/primer, respectively. DNA restriction fragments with 1 to 4 bases of template/primer were substrates for neither alpha nor alpha X C1C2-polymerase. Therefore, we propose that C1C2 enhances the ability of alpha polymerase to initiate DNA synthesis by eliminating nonproductive binding of the enzyme to single-stranded DNA, allowing it to slide along the template until it recognizes a primer.  相似文献   

16.
Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.  相似文献   

17.
To understand the mechanism of action of the two eukaryotic replication auxiliary proteins proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C), we constructed a plasmid for producing PCNA which could be 32P labelled in vitro. This allowed us to analyze the assembly of the auxiliary proteins directly on DNA and to examine this process in the absence of DNA synthesis. By using closed circular double-stranded DNA or gapped circular DNA for protein-DNA complex formation, the following results were obtained, (i) RF-C can load PCNA in an ATP-dependent manner directly on double-stranded DNA, and no 3'-OH ends are required for this reaction; (ii) the RF-C-PCNA complex assembled on closed circular DNA differs from those assembled on gapped or nicked circular DNA; (iii) the stable RF-C-PCNA complex can be assembled on circular but not on linear DNA; and (iv) only gapped DNA can partially retain the assembled RF-C-PCNA complex upon the linearization of the template. We propose that RF-C first binds unspecifically to double-stranded DNA in the presence of ATP and then loads PCNA onto DNA to yield a protein complex able to track along DNA. The RF-C-PCNA complex could slide along the template until it encounters a 3'-OH primer-template junction, where it is likely transformed into a competent clamp. The latter complex, finally, might still be able to slide along double-stranded DNA.  相似文献   

18.
Activator 1 (A1) is a multiprotein complex which is essential for proliferating cell nuclear antigen (PCNA)-dependent DNA polymerase delta (pol delta) activity and efficient in vitro DNA synthesis in the SV40 dipolymerase replication system. In this report, we describe the isolation of A1 from HeLa cytosolic extracts. A1 stimulated pol delta activity in singly primed phi X174 DNA or (dA)4500.oligo(dT)12-18 in reactions containing PCNA, single-stranded DNA binding protein (SSB), and ATP. Using this assay, A1 has been extensively purified. Purified preparations contained five discrete subunits of 145, 40, 38, 37, and 36.5 kDa. ATP hydrolysis to ADP and Pi is essential for A1-dependent pol delta activity, and we have shown that A1 contains an intrinsic ATPase which is stimulated by DNA. The DNA-dependent hydrolysis of ATP can be stimulated by PCNA and further activated by PCNA plus the human single-stranded DNA binding protein. These stimulatory effects were observed with (dA)4500.oligo(dT)12-18, but were not detected with each poly-deoxynucleotide alone. Furthermore, A1 formed a complex with (dA)4500.oligo(dT)12-18 which could be measured by nitrocellulose binding. No complex with (dA)4500 or oligo(dT)12-18 alone was detected by this procedure. Data are also presented which indicate that A1, in conjunction with PCNA, functions as a primer-recognition factor for pol delta, increasing its ability to utilize low levels of primer ends, but it does not increase the size of the DNA products. A1 also markedly reduced the amount of PCNA required for pol delta activity on a multiply primed DNA suggesting that PCNA interacts with A1 at the primer end. These multiple effects of A1 closely resemble the properties of the multisubunit protein RF-C described by Tsurimoto and Stillman (Tsurimoto, T., and Stillman, B. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1023-1027).  相似文献   

19.
Replication of singly-DNA primed M13 DNA by DNA polymerase (pol) δ completely relies on the simultaneous addition of proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) (orE.coli singlestrand DNA binding protein, SSB). Pol ? core alone is able to synthesize the products on singly-primed ssDNA. However, DNA synthesis by pol ? was stimulated up to 10-fold upon addition of the three auxiliary proteins PCNA, RF-C and SSB. This stimulation of pol ? by PCNA/RF-C/SSB appears to be the superposition of two events: pol, ? holoenzyme (pol ?, PCNA, RF-C) synthesized longer products than its pol ? core counterpart, but elongated less primers. Furthermore, we analyzed the cooperative action of pol α/primase with pol δ or pol ? holoenzymes on unprimed M13 DNA. While pol δ displayed higher dNMP incorporation than pol ?, when a single primer was preannealed to DNA, pol ? was more efficient in the utilization of the primers synthesized by pol α/primase. Under these conditions both longer products and a higher amount of dNMP incorporation was found for pol ? holoenzyme, than for pol δ. Our data support the hypothesis of pol δ as the leading and pol ? as the second lagging strand replication enzyme.  相似文献   

20.
Human DNA polymerase delta (pol delta) is required for the synthesis of leading strand of simian virus 40 (SV40) DNA replication in vitro. Pol delta requires the accessory factors, proliferating cell nuclear antigen (PCNA), activator 1 (A1; also known as replication factor C [RF-C]), human single-stranded DNA binding protein (HSSB; also known as replication protein A [RP-A]) for the elongation of primed template DNA. Since pol delta has an associated 3'-5' exonuclease activity, the effect of pol delta accessory factors on the exonuclease activity was examined. The 3'-5' exonuclease activity was stimulated 8-10 fold by the addition of HSSB, and this stimulatory effect was preferential to HSSB since other SSBs from E. coli, T4 or adenovirus, had a little or no effect. The stimulatory effect of HSSB was markedly inhibited by the combined action of A1 and PCNA. Furthermore, the addition of deoxyribonucleoside triphosphates (dNTPs) completely abolished the effect of HSSB on the 3'-5' exonuclease activity even in the absence of pol delta accessory factors. These results suggest that accessory factors and dNTPs regulate both the polymerase and the 3'-5' exonuclease activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号