首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss-of-function experiments in mice have yielded invaluable mechanistic insights into the pathogenesis of Marfan syndrome (MFS) and implicitly, into the multiple roles fibrillin-1 microfibrils play in the developing and adult organism. Unfortunately, neonatal death from aortic complications of mice lacking fibrillin-1 (Fbn1(-/-) mice) has limited the scope of these studies. Here, we report the creation of a conditional mutant allele (Fbn1(fneo) ) that contains loxP sites bordering exon1 of Fbn1 and an frt-flanked neo expression cassette downstream of it. Fbn1(fneo/+) mice were crossed with FLPeR mice and the resulting Fbn1(Lox/+) progeny were crossed with Fbn1(+/-) ;CMV-Cre mice to generate Fbn1(CMV-/-) mice, which were found to phenocopy the vascular abnormalities of Fbn1(-/-) mice. Furthermore, mating Fbn1(Lox/+) mice with Prx1-Cre or Osx-Cre mice revealed an unappreciated role of fibrillin-1 microfibrils in restricting osteoprogenitor cell recruitment. Fbn1(Lox/+) mice are, therefore, an informative genetic resource to further dissect MFS pathogenesis and the role of extracellular fibrillin-1 assemblies in organ development and homeostasis.  相似文献   

2.
3.
The tight skin 2 (Tsk2) mutation is an ENU induced dominant mutation localized on mouse chromosome 1. While the molecular defect is unknown, Tsk2/+ mice display cutaneous thickening associated with excessive matrix production and are used as a model of scleroderma. The purpose of this study was to examine the cellular mechanisms associated with the excessive synthesis of matrix macromolecules using a collagen promoter GFP reporter transgene (pOBCol3.6GFP) as a marker of Col1a1 expression. This analysis of pOBCol3.6GFP expression in Tsk2/+ skin showed an increase in transgene activity compared to wild-type (+/+) samples. In addition, an increased area of "high" GFP fluorescence in Tsk2/+ dermis in both 1- and 4-month-old mice was observed that was also associated with an increased number of dermal fibroblasts per unit area of dermis. These data collectively suggest an important mechanism of Tsk2/+ skin fibrosis; an increased number of collagen expressing cells as well as elevated collagen expression on a per cell basis. During this study it was noted that Tsk2/+ mice appeared consistently smaller than wild-type (+/+) siblings and measurements of body length revealed a decrease (5-10%) in 1- and 2-month-old Tsk2/+ mice as well as a decrease in body weight in both age groups as compared to wild-type (+/+) control mice. Femur length was also decreased (2-9%) in Tsk2/+ mice. Finally, in contrast to Tsk/+ mice that display an emphysema-like lung pathology, histological sections of lungs from Tsk2/+ mice were normal and indistinguishable from wild-type (+/+) controls.  相似文献   

4.
Fibrillin microfibrils are extracellular matrix structures with essential functions in the development and the organization of tissues including blood vessels, bone, limbs and the eye. Fibrillin‐1 and fibrillin‐2 form the core of fibrillin microfibrils, to which multiple proteins associate to form a highly organized structure. Defining the components of this structure and their interactions is crucial to understand the pathobiology of microfibrillopathies associated with mutations in fibrillins and in microfibril‐associated molecules. In this study, we have analyzed both in vitro and in vivo the role of fibrillin microfibrils in the matrix deposition of latent TGF‐β binding protein 1 (LTBP‐1), ‐3 and ‐4; the three LTBPs that form a complex with TGF‐β. In Fbn1?/? ascending aortas and lungs, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. In addition, in cultures of Fbn1?/? smooth muscle cells or lung fibroblasts, LTBP‐3 and LTBP‐4 are not incorporated into a matrix lacking fibrillin‐1 microfibrils, whereas LTBP‐1 is still deposited. Fibrillin‐2 is not involved in the deposition of LTBP‐1 in Fbn1?/? extracellular matrix as cells deficient for both fibrillin‐1 and fibrillin‐2 still incorporate LTBP‐1 in their matrix. However, blocking the formation of the fibronectin network in Fbn1?/? cells abrogates the deposition of LTBP‐1. Together, these data indicate that LTBP‐3 and LTBP‐4 association with the matrix depends on fibrillin‐1 microfibrils, whereas LTBP‐1 association depends on a fibronectin network. J. Cell. Physiol. 227: 3828–3836, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
We describe here the identification of defined mutations in both alleles of the fibrillin gene (FBN1) in a compound-heterozygote Marfan syndrome (MFS) child who had a very severe form of MFS resulting in death from cardiac failure at the age of 4 mo. The nonconsanguineous parents were both affected with MFS. The father's heterozygous point mutation has earlier been reported to result in W217G substitution, the mother was here shown to carry a heterozygous point mutation resulting in G2627R substitution, and the child had inherited both these mutations. The mutant FBN1 alleles were demonstrated to be transcribed with equal efficiency compared with the normal alleles, but metabolic labeling of fibroblast cultures from the child and both parents showed reduced biosynthesis and secretion of profibrillin. Also, the respective amounts of fibrillin in cell-culture media and extracellular-matrix extracts were markedly diminished, particularly in the cell cultures from father and child. In addition, immunofluorescence analysis of the cell cultures of all three family members revealed a drastically reduced amount of microfibrils, and virtually no visible fibrils could be seen in the case of the compound-heterozygote child. These findings demonstrate incomplete dominance of fibrillin mutations and underline the fatal consequences of the complete absence of normal fibrillin molecules in the microfibrils.  相似文献   

6.
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.  相似文献   

7.
8.
To elucidate the contribution of the extracellular microfibril-elastic fiber network to vertebrate organogenesis, we generated fibrillin 2 (Fbn2)-null mice by gene targeting and identified a limb-patterning defect in the form of bilateral syndactyly. Digit fusion involves both soft and hard tissues, and is associated with reduced apoptosis at affected sites. Two lines of evidence suggest that syndactily is primarily due to defective mesenchyme differentiation, rather than reduced apoptosis of interdigital tissue. First, fusion occurs before appearance of interdigital cell death; second, interdigital tissues having incomplete separation fail to respond to apoptotic clues from implanted BMP-4 beads. Syndactyly is associated with a disorganized matrix, but with normal BMP gene expression. On the other hand, mice double heterozygous for null Fbn2 and Bmp7 alleles display the combined digit phenotype of both nullizygotes. Together, these results imply functional interaction between Fbn2-rich microfibrils and BMP-7 signaling. As such, they uncover an unexpected relationship between the insoluble matrix and soluble factors during limb patterning. We also demonstrate that the Fbn2- null mutation is allelic to the recessive shaker-with-syndactyly (sy) locus on chromosome 18.  相似文献   

9.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by oxidative stress, impaired vascular function, and attenuated angiogenesis. The tight-skin (Tsk(-/+)) mouse is a model of SSc that displays many of the cellular features of the clinical disease. We tested the hypotheses that abnormal fibrillin-1 expression and chronic phospholipid oxidation occur in Tsk(-/+) mice and, furthermore, that these factors precipitate a prooxidant state, collagen-related protein expression, apoptosis, and mesenchymal transition in endothelial cells cultured on Tsk(-/+) extracellular matrix. Human umbilical vein endothelial cells were seeded on microfibrils isolated from skin of C57BL/6J (control) and Tsk(-/+) mice in the presence or absence of chronic pretreatment with the apolipoprotein Apo A-I mimetic D-4F (1 mg·kg(-1)·day(-1) ip for 6 to 8 wk). Nitric oxide-to-superoxide anion ratio was assessed 12 h after culture, and cell proliferation, apoptosis, and phenotype were studied 72 h after culture. Tsk(-/+) mice demonstrated abnormal "big fibrillin" expression (405 kDa) by Western blot analysis compared with control. Endothelial cells cultured on microfibrils prepared from Tsk(-/+) mice demonstrated reduced proliferation, a prooxidant state (reduced nitric oxide-to-superoxide anion ratio), increased apoptosis, and collagen-related protein expression associated with mesenchymal transition. Chronic D-4F pretreatment of Tsk(-/+) mice attenuated many of these adverse effects. The findings demonstrate that abnormal fibrillin-1 expression and chronic oxidative stress mediate endothelial mesenchymal transition in Tsk(-/+) mice. This mesenchymal transition may contribute to the reduction in angiogenesis that is known to occur in this model of SSc.  相似文献   

10.
11.
The severe skeletal abnormalities associated with Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA) underscore the notion that fibrillin assemblies (microfibrils and elastic fibers) play a critical role in bone formation and function in spite of representing a low abundance component of skeletal matrices. Studies of MFS and CCA mice have correlated the skeletal phenotypes of these mutant animals with distinct pathophysiological mechanisms that reflect the contextual contribution of fibrillin-1 and -2 scaffolds to TGFβ and BMP signaling during bone patterning, growth and metabolism. Illustrative examples include the unique role of fibrillin-2 in regulating BMP-dependent limb patterning and the distinct impact of the two fibrillin proteins on the commitment and differentiation of marrow mesenchymal stem cells. Collectively, these findings have important implication for our understanding of the pathophysiological mechanisms that drive age- and injury-related processes of bone degeneration.  相似文献   

12.
Aortic aneurysm is predominantly found in the ascending aorta in patients with Marfan syndrome (MFS). However, descending aortic disease has emerged as a problem since people are living longer because of improved medical and surgical management of the ascending aorta. Diagnostic procedures before disease onset and the mechanisms involved in the transition of normal aortic tissue to aneurysm remain unclear. We determined signs of descending aortic disease before disease onset in mice with a mutation in the fibrillin 1 gene (Fbn1(+/C1039G)), a validated mouse model of disease susceptibility and progression of aortic aneurysm of MFS. We analyzed a tubular unfixed non-aneurysmal descending thoracic aorta from 8-month-old wild-type and Fbn1(+/C1039G) mice by a tubular biaxial tester that works in conjunction with a two-photon nonlinear microscope. Fbn1(+/C1039G) mouse aorta was more compliant in the circumferential direction. Two-photon imaging showed defective organization of adventitial collagen fibers in the pressurized aortas of Fbn1(+/C1039G) mice. Moreover, disruption in the elastic lamina was noted in the absence of aneurysms in pressurized aortas but not unpressurized aortas of Fbn1(+/C1039G) mice. At the molecular level, this altered tissue behavior in non-aneurysmal descending aortas of Fbn1(+/C1039G) mice was accompanied by an increasing trend of canonical but not noncanonical, transforming growth factor-β (TGFβ) signaling. Finally, assays of in vitro collagen lattice formation in mouse wild-type and TGFβ1-deficient embryonic fibroblasts indicate that TGFβ1 can regulate collagen organization. The ability to reveal the presence of altered biomechanics and microstructure coupled with subtle changes in TGFβ signaling provides a novel surrogate measure of tissue susceptibility to aneurysm before disease onset.  相似文献   

13.
A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice.   总被引:6,自引:0,他引:6  
Mice heterozygous for the tight-skin (Tsk) mutation develop skin fibrosis. Previous studies have implicated a role for the immune system and, specifically, CD4(+) T cells, in the etiology of skin fibrosis in Tsk/+ mice. We have recently shown that the administration of neutralizing anti-IL-4 antibodies to Tsk/+ mice prevented the development of skin fibrosis in these mice. Since IL-4 is a major cytokine produced by T helper 2 (Th2) cells, we investigated the role of Th2 cells in mediating skin fibrosis in Tsk/+ mice. Previous studies have shown that the development of Th2 cells in non-Tsk mice is abrogated in mice with null mutation for either the IL-4 or the Stat6 gene. In this study we showed that the polarization of CD4(+) T cells from Tsk/+ mice toward the Th2 lineage is also dependent on a functioning IL-4 or Stat6 gene. More importantly, the development of skin fibrosis in Tsk/+ mice was abrogated by the IL4(-/-) or the Stat6(-/-) mutation. We also determined whether alteration of the TCR repertoire in Tsk/+ mice, achieved by the introduction of TCR transgenes, was able to prevent the development of skin fibrosis in Tsk/+ mice. We found that the exclusive usage of the Vbeta8.2 gene segment by T cells was sufficient to prevent skin fibrosis in Tsk/+ mice. This result suggests that the exclusive use of this Vbeta gene segment by T cells may have prevented the development of fibrosis-causing Th2 cells.  相似文献   

14.
15.
The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10 weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-β1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-β1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production.  相似文献   

16.
Interferon regulatory factor 5 (IRF5) has been called a “master switch” for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0–100 μg/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50μg/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.  相似文献   

17.
Mutations in fibrillin-1 or fibrillin-2, the major structural components of extracellular microfibrils, cause pleiotropic manifestations in Marfan syndrome and congenital contractural arachnodactyly, respectively. We recently found that fibrillin-1 and fibrillin-2 control bone formation by regulating osteoblast differentiation through the differential modulation of endogenous TGFβ and bone morphogenetic protein signals. Here, we describe in vivo and ex vivo experiments that implicate the fibrillins as negative regulators of bone resorption. Adult Fbn2−/− mice display a greater than normal osteolytic response to locally implanted lipopolysaccharide-coated titanium particles. Although isolated cultures of Fbn2−/− preosteoclasts exhibited normal differentiation and activity, these features were substantially augmented when mutant or wild-type preosteoclasts were co-cultured with Fbn2−/− but not wild-type osteoblasts. Greater osteoclastogenic potential of Fbn2−/− osteoblasts was largely accounted for by up-regulation of the Rankl gene secondary to heightened TGFβ activity. This conclusion was based on the findings that blockade of TGFβ signaling blunts Rankl up-regulation in Fbn2−/− osteoblasts and bones and that systemic TGFβ antagonism improves locally induced osteolysis in Fbn2−/− mice. Abnormally high Rankl expression secondary to elevated TGFβ activity was also noted in cultured osteoblasts from Fbn1−/− mice. Collectively our data demonstrated that extracellular microfibrils balance local catabolic and anabolic signals during bone remodeling in addition to implying distinct mechanisms of bone loss in Marfan syndrome and congenital contractural arachnodactyly.  相似文献   

18.
Marfan syndrome (MFS) is an autosomal-dominant disorder of connective tissue caused by mutations in the fibrillin-1 (FBN1) gene. Mortality is often due to aortic dissection and rupture. We investigated the structural and functional properties of the heart and aorta in a [Fbn1C1039G/+] MFS mouse using high-resolution ultrasound (echo) and optical coherence tomography (OCT). Echo was performed on 6- and 12-month old wild type (WT) and MFS mice (n = 8). In vivo pulse wave velocity (PWV), aortic root diameter, ejection fraction, stroke volume, left ventricular (LV) wall thickness, LV mass and mitral valve early and atrial velocities (E/A) ratio were measured by high resolution echocardiography. OCT was performed on 12-month old WT and MFS fixed mouse hearts to measure ventricular volume and mass. The PWV was significantly increased in 6-mo MFS vs. WT (366.6 ± 19.9 vs. 205.2 ± 18.1 cm/s; p = 0.003) and 12-mo MFS vs. WT (459.5 ± 42.3 vs. 205.3 ± 30.3 cm/s; p< 0.0001). PWV increased with age in MFS mice only. We also found a significantly enlarged aortic root and decreased E/A ratio in MFS mice compared with WT for both age groups. The [Fbn1C1039G/+] mouse model of MFS replicates many of the anomalies of Marfan patients including significant aortic dilation, central aortic stiffness, LV systolic and diastolic dysfunction. This is the first demonstration of the direct measurement in vivo of pulse wave velocity non-invasively in the aortic arch of MFS mice, a robust measure of aortic stiffness and a critical clinical parameter for the assessment of pathology in the Marfan syndrome.  相似文献   

19.
Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgΔloxPneo, carrying the same internal deletion of exons 19-24 as the mgΔ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.  相似文献   

20.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertension after prolonged exposure to hypoxia without an associated increase in pulmonary vascular remodeling or proliferation compared with wild-type mice. This is associated with defective endothelial-dependent vasodilatation and enhanced vasoconstriction in isolated intrapulmonary artery preparations. In addition, there is a selective decrease in hypoxia-induced, BMP-dependent, endothelial nitric oxide synthase expression and Smad signaling in the intact lungs and in cultured pulmonary microvascular endothelial cells from Bmpr2 delta Ex2/+ mutant mice. These findings indicate that the pulmonary endothelium is a target of abnormal BMP signaling in Bmpr2 delta Ex2/+ mutant mice and suggest that endothelial dysfunction contributes to their increased susceptibility to hypoxic pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号