首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When vaccinia-virus-infected cells were labeled with radioactive phosphate in the absence of viral gene expression an additional phosphoprotein, containing phosphoserine, was found specifically associated with the ribosomes. The phosphoprotein was removed from the ribosomes following a 0.5 M KCl washing or after EDTA treatment. This additional phosphoprotein was found in infected cells after either a long (3-4 h) or a short (30 min) labeling period; it was detected when the infected cells were incubated in the presence or absence of an inhibitor of RNA or protein synthesis. This phosphoprotein originated from the phosphorylation of vaccinia virion structural protein VP11b (Mr 11,000) at a specific site since only a single major phosphopeptide was obtained after trypsin digestion. This phosphoprotein was also present in purified vaccinia virions labeled with radioactive phosphate. VP11b protein was phosphorylated in vitro by the protein kinase associated with the cores. When the reaction was carried out at an alkaline pH the phosphorylation in vitro occurred at different sites in the protein; at neutral pH the phosphorylation of VP11b was more specific and, as judged by tryptic peptide analysis, occurred mainly at the same site as in the phosphorylation in vivo. A role for the involvement of phosphoprotein VP11b in the establishment of the shut off of host protein synthesis by vaccinia virus is suggested.  相似文献   

2.
The purified p12 phosphoprotein of Rauscher murine leukemia virus was fractionated by ion exchange chromatography into subpopulations of molecules containing different amounts of covalently linked phosphate. Of the various phosphorylated forms of p12 protein purified from virions, only a species containing relatively little phosphate can bind in vitro to purified homologous 70S viral RNA. Using ultraviolet irradiation to stabilize ribonucleoprotein complexes in intact virions, the same molecular species of p12 phosprotein can be isolated in close association with the 70S viral genome. The results show that phosphorylation of type C viral p12 proteins influences the extent, but not the specificity, of their interaction with homologous viral RNA.  相似文献   

3.
Proteins associated with purified human cytomegalovirus particles.   总被引:20,自引:18,他引:2       下载免费PDF全文
C J Baldick  Jr  T Shenk 《Journal of virology》1996,70(9):6097-6105
Virion-associated proteins isolated from purified human cytomegalovirus particles (strain AD169) were used as substrates for chemical sequence analysis. Extracellular virions, noninfectious enveloped particles, and dense bodies were purified by negative viscosity-positive density gradient centrifugation, and their component proteins were separated by denaturing polyacrylamide gel electrophoresis. The deduced amino acid sequence of individual protein bands was used to identify six corresponding viral genes whose products have not previously been identified as virion constituents: UL47, UL25, UL88, UL85, UL26, and UL48.5. In addition, a 45-kDa cellular protein was identified, and the protein fragments sequenced have a high degree of amino acid identity with actin. However, antiactin monoclonal and polyclonal antibodies did not react with a specific protein in the virus preparations, suggesting that this 45-kDa protein is an immunologically distinct isoform of actin. The newly identified viral and cellular proteins were resistant to protease treatment of purified virions, suggesting that they are unlikely to be contaminants of the viral preparations.  相似文献   

4.
The major nucleocapsid protein of avian retroviruses, pp12, preferentially binds to the single-stranded regions of 60 S viral RNA with a apparent binding constant (Kapp) of 1.2 X 10(11) M-1. If the phosphate associated with serine residues of pp12 is hydrolyzed by either alkali treatment or with partially purified phosphoprotein phosphatase activities isolated from virions, the Kapp for binding to 60 S RNA decreases 100-fold. The high affinity binding of pp12 to viral RNA can be restored by phosphorylation of the protein with a protein kinase, protease-activated kinase I. The same serine residues phosphorylated in vivo are phosphorylated by protease kinase I in vitro. These residues have been identified as serine residues 40 and either 76 or 77. The protein purified from virions is phosphorylated primarily at serine residue 40 (greater than 90%). This suggests that phosphoserine residue 40 is responsible for modulating the binding of the protein to RNA. Thus, the phosphorylation state of pp12 can be reversibly altered in vitro resulting in the interconversion of the protein between a state of high and low affinity for single-stranded viral RNA.  相似文献   

5.
Phosphorylation of Animal Virus Proteins by a Virion Protein Kinase   总被引:12,自引:11,他引:1       下载免费PDF全文
Compared with several other enveloped viruses, purified virions of frog virus 3 contained a relatively high activity of a protein kinase which catalyzed the phosphorylation of endogenous polypeptides or added substrate proteins. Virions also contained a phosphoprotein phosphatase activity which released phosphate covalently linked to proteins. It was possible to select reaction conditions where turnover of protein phosphoesters was minimal, as the phosphatase required Mn(2+) ions for activity whereas the protein kinase was active in the presence of Mg(2+) ions. Electrophoretic studies in polyacrylamide gels containing sodium dodecyl sulfate indicated that at least 10 of the virion polypeptides were phosphorylated in the in vitro protein kinase reaction. Characterization of these phosphoproteins demonstrated that the phosphate was incorporated predominantly in a phosphoester linkage with serine residues. The protein kinase was solubilized by disrupting purified virions with a nonionic detergent in a high-ionic-strength buffer and was separated from many of the virion substrate proteins by zonal centrifugation in glycerol gradients. The partially purified protein kinase would phosphorylate polypeptides of many different animal viruses, and maximal activity was not dependent on added cyclic nucleotides. These properties distinguished the virion protein kinase from a well characterized cyclic AMP-dependent protein kinase which phosphorylated viral proteins only to a small extent.  相似文献   

6.
The protein kinase associated with virions of frog virus 3 was purified to apparent homogeneity by ion exchange chromatography and gel filtration. The enzyme protein appeared as a single polypeptide of molecular weight 50,000 to 55,000 as determined by gel filtration, glycerol gradient sedimentation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and comprised approximately 0.4% of the total virion protein. The activity was classified as a cyclic nucleotide-independent protein kinase as it was not effected by cyclic adenosine 3':5'-monophosphate, cyclic guanosine 3':5'-monophosphate, or inhibited by a cyclic nucleotide-dependent protein kinase inhibitor protein, and utilized GTP as well as ATP as a phosphate donor. The greatest rates of phosphorylation were obtained with acidic phosphoprotein substrates such as casein or phosvitin, although potential physiological substrates for this activity included specific virion polypeptides of frog virus.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) strain LAV-1 (HIV-1(LAV-1)) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified HIV-1(LAV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained. The 2D gel electrophoresis image suggested that 24 proteins can be identified inside the virion. Furthermore, the stained protein spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Peptide mass fingerprinting data suggested that two isoforms of cyclophilin A (CyPA), one with an isoelectric point (pI) of 6.40 and one with a pI of 6.53, are inside the viral membrane; that another isoform, with a pI of 6.88, is outside the viral membrane; and that the CyPA isoform with a pI of 6.53 is N acetylated. The mechanisms that permit the redistribution of CyPA on the viral surface have not yet been clarified, but it is surmised that the CyPA isoform with a pI of 6.88 may play a critical role in the attachment of virions to the surface of target cells and that both CyPA isoforms with pIs of 6.40 and 6.53 may regulate the conformation of the HIV-1 capsid protein.  相似文献   

8.
The uncoating of adenovirus type 2 and a temperature-sensitive mutant, tsl, was studied. HEp-2 cells were infected with 32P- OR 125I-labeled purified virions for various lengths of time, and the nuclear and cytoplasmic fractions were analyzed by sucrose gradient velocity sedimentation and sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. Within 1 h of infection, virions were converted into three subviral structures: (1) subviral structures in the cytoplasm with a density greater than virions but which qualitatively still contained all virus polypeptides; (ii) corelike structures associated with both the nuclear and cytoplasmic fractions and composed of viral DNA and polypeptides VIa2, V and PVII; and (iii) putative DNA-terminal protein complexes in the nuclei. The kinetic and compartmentalization studies suggested that the DNA-terminal protein complex is the end product of uncoating. The virions which were synthesized by tsl at the nonpermissive temperature and contained the precursor polypeptides PVI and PVII were found to be blocked in uncoating at the corelike stage. This block in uncoating provides the explanation for the lack of infectivity of these virions. A model for the uncoating of adenovirus is proposed.  相似文献   

9.
The structural proteins of mouse mammary tumor virus (MMTV) were analyzed by two-dimensional electrophoresis on isoelectric focusing and sodium dodecyl sulfate gels. Many of the viral proteins displayed heterogeneity in charge due to variable contents of carbohydrates (in particular, sialic acid) and phosphate residues. Neuraminidase treatment of the virions influenced the isoelectric pattern of the envelope glycoproteins. The glycoproteins of an MMTV variant which was attenuated by replication in feline kidney cells had different isoelectric points. This suggested that the acquisition of an altered carbohydrate configuration had changed the host range of the virus. The major MMTV structural core protein, p27, consisted of two species, which had identical iodinated tryptic peptide compositions but differed in phosphate contents. Another MMTV phosphoprotein, p21, was separated into four different phosphorylated species. Phosphorylation of p21 could be performed in vitro by the MMTV virion-associated protein kinase. This enzyme also has a high affinity for MMTV p30 as a substrate. Possible functions of this enzyme are discussed.  相似文献   

10.
Proteins of Norwalk virus.   总被引:36,自引:7,他引:29       下载免费PDF全文
The proteins of the Norwalk virus were studied by polyacrylamide gel electrophoresis. Highly purified specifically immunoprecipitated virions appeared to contain a single primary structural protein with a molecular weight of 59,000. In addition, a soluble Norwalk viral protein with a molecular weight of 30,000 was identified in fecal specimens containing Norwalk virus. The protein structure of the virion is similar to that of the Calciviridae family.  相似文献   

11.
12.
Hyperimmune antisera to purified Sindbis (SIN) or Semliki Forest (SF) virus were used to identify alphavirus-specific and cross-reactive proteins in virions and infected cells. The hyperimmune sera participated in homologous and cross-cytolysis of alphavirus-infected cells, and the use of monospecific antisera to SIN structural proteins suggested that E1 and E2 could serve as target proteins in cytolysis. Proteins from purified virions or infected cells were extracted with Nonidet P-40, denatured by procedures for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose solid supports, and reacted with hyperimmune sera and 125I-labeled protein A (immunoblotting on denatured proteins). Alternatively, native proteins extracted by mild Nonidet P-40 treatment were precipitated with hyperimmune sera before denaturation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After immunoblotting, homologous antiserum reacted with the virus structural proteins E1, E2, capsid extracted from purified virions, and the counterparts of these proteins extracted from infected cells. In addition, PE2 and a 92,000-molecular-weight protein from infected cells reacted with homologous antiserum. These proteins were also immunoprecipitated with homologous antiserum. After immunoblotting, the Sindbis capsid protein was shown to be cross-reactive whether derived from purified virions or from infected cells; no cross-reactivity was observed with PE2 or E2 from either source, and the E1 glycoprotein was shown to be cross-reactive only when obtained from virions. However, the E1 glycoprotein could be cross-immunoprecipitated from infected cells (as well as from disrupted virions), and, in addition, capsid and a 92,000-molecular-weight protein were cross-immunoprecipitated from infected cells. These results suggest that a native conformation of the cell-associated E1 glycoproteins may be required for immunological cross-reactivity (immune precipitation), whereas virion but not cell-associated E1 retains immunological cross-reactivity after denaturation (immunoblot technique). The findings extend our previously published evidence which suggested that alphavirus maturation is accompanied by a change in immunological cross-reactivity with respect to E1.  相似文献   

13.
14.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

15.
Extraction of the purified nuclei of SV40 infected cells reveals a heterogeneous set of viral DNA-protein complexes. Earlier, the authors have shown the possibility of nuclear particles extraction being indistinguishable from mature SV40 virions. In the present work, structural intermediates of virus maturation from free minichromosomes through replicative complexes to immature virion particles have been analyzed. The fractionation of viral complexes by non-denaturing agarose gel electrophoresis has been employed. The protein composition of the complexes as determined by two-dimensional gel electrophoresis indicates that five histone fractions including H1 are present during minichromosome maturation to the chromosome of the mature virion.  相似文献   

16.
Selective dansylation of M protein within intact influenza virions.   总被引:1,自引:1,他引:0       下载免费PDF全文
Exposure of purified influenza virions to [14C]dansyl chloride resulted in the covalent attachment of the dansyl chromophore to the virion. Gel electrophoresis revealed that the dansyl chromophore was specifically coupled to the internal membrane (M) protein. Purification of the M protein by gel filtration followed by cyanogen bromide cleavage and peptide fractionation revealed that four of six peptide peaks contained dansyl label. Acid hydrolysis of the separated peptide peaks followed by thin-layer chromatography revealed that dansyl label was coupled to lysine residues present in these peptides. The results of these investigations have demonstrated that the M protein molecule is the major viral polypeptide labeled when intact virions are exposed to dansyl chloride.  相似文献   

17.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

18.
Varicella-zoster virus (VZV), an alphaherpesvirus restricted to humans, infects differentiated cells in vivo, including T lymphocytes, keratinocytes, and neurons, and spreads rapidly in confluent cultured dermal fibroblasts (HFFs). In VZV-infected HFFs, atypical expression of cyclins D3 and B1 occurs along with the induction of cyclin-dependent kinase (CDK) activity. A specific CDK1 inhibitor blocked VZV spread, indicating an important function for this cellular kinase in VZV replication. CDK activity assays of infected cells revealed a large viral phosphoprotein that was identified as being the major immediate-early transactivator, IE62. Since IE62 colocalized with CDK1/cyclin B1 by confocal microscopy, we investigated whether this cellular kinase complex interacts with IE62. Using recombinant fragments of IE62 spanning the entire amino acid sequence, we found that purified CDK1/cyclin B1 phosphorylated IE62 at residues T10, S245, and T680 in vitro. Immunoprecipitation of cyclin B1 from VZV-infected HFFs indicated that IE62 was included in the complex within infected cells. The full-length IE62 protein, obtained by immunoprecipitation from infected cells, was also phosphorylated by purified CDK1/cyclin B1. Based on IE62/CDK1/cyclin B1 colocalization near viral assembly regions, we hypothesized that these cellular proteins could be incorporated into VZV virions with IE62. Purified virions were analyzed by immunoblotting for the presence of CDK1 and cyclin B1, and active CDK1 and cyclin B1 were present in the VZV tegument with IE62 and were sensitive to detergent treatment. Thus, IE62 is a substrate for CDK1/cyclin B1, and virions could deliver the active cellular kinase to nondividing cells that normally do not express it.  相似文献   

19.
The matrix protein from avian myeloblastosis virus and the Rous sarcoma virus, Prague C strain, is a phosphoprotein. A comparison of the amino acid sequences shows these phosphoproteins are very similar. The sites of phosphorylation of the matrix protein purified from virions are identified as serine residues 68 and 106. Treatment with purified rabbit skeletal-muscle protein phosphatase 1 or 2A, selectively releases phosphate from serine 68, while alkali treatment releases phosphate from both sites. When analyzed as a substrate for six different protein kinases, only the Ca2+/phospholipid-dependent protein kinase modifies the matrix protein. The serine residues phosphorylated in vivo are identical to those phosphorylated in vitro by this protein kinase. The role of these phosphorylation events in viral production is discussed.  相似文献   

20.
Simian virus (SV40) nucleoprotein complexes containing circular supercoiled viral DNA were extracted from infected cells and purified by differential centrifugation. The protein content of these complexes was compared by electrophoresis on 15% acrylamide gels with the protein content of purified SV40 virions and with histones from virus-infected cells. The electrophoretic patterns of histones from each of the sources revealed several major differences. SV40 virions contained histones H3, H2B, H2A, and H4 but not H1. Nucleoprotein complexes and host cells contained all five major histone groups. Relative to cellular histones, virion and nucleoprotein complex histones were enriched 15 to 40% in histones H3 and H4. In addition to the major classes of histones, several subfractions of histones H1, H3, and H4 were observed in acrylamide gels of proteins from SV40 virions and viral nucleoprotein complexes. Acetate labeling experiments indicated that each subfraction of histones H3 and H4 had a different level of acetylation. The histones from SV40 virions and nucleoprotein complexes were acetylated to significantly higher levels than those of infected host cells. No apparent differences in phosphorylation of the major histone groups were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号