首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the eluted fractions of histone-treated crude extracts separated by Sephadex G-200 filtration, multiple protein kinase (PK) activities, including three from brain and two from skeletal muscle, were augmented by both S-100 protein and parvalbumin on the phosphorylation of endogenous substrates. One additional PK activity suppressed by both S-100 and parvalbumin was also found in muscle. In comparison, phosphoprotein phosphatases (PPase), which were also prepared by the same procedure of initial step of histone-treatment followed by the steps of Bio-Gel P-6DG for brain and DNA-cellulose for muscle, were all activated by S-100 while inhibited by parvalbumin and phosphatidylserine.  相似文献   

2.
Visfatin, which is secreted as an adipokine and cytokine, has been implicated in cancer development and progression. In this study, we investigated the NAD‐producing ability of visfatin and its relationship with SIRT1 (silent information regulator 2) and p53 to clarify the role of visfatin in breast cancer. MCF‐7 breast cancer cells were cultured and treated with visfatin. SIRT1 activity was assessed by measuring fluorescence intensity from fluoro‐substrate peptide. To investigate the effect of visfatin on p53 acetylation, SDS‐PAGE followed by western blotting was performed using specific antibodies against p53 and its acetylated form. Total NAD was measured both in cell lysate and the extracellular medium by colorimetric method. Visfatin increased both extracellular and intracellular NAD concentrations. It also induced proliferation of breast cancer cells, an effect that was abolished by inhibition of its enzymatic activity. Visfatin significantly increased SIRT1 activity, accompanied by induction of p53 deacetylation. In conclusion, the results show that extracellular visfatin produces NAD that causes upregulation of SIRT1 activity and p53 deacetylation. These findings explain the relationship between visfatin and breast cancer progression.  相似文献   

3.
The realization, that the androgen receptor (AR) is essential for prostate cancer (PC) even after relapse following androgen deprivation therapy motivated the search for novel types of AR inhibitors. We proposed that targeting AR expression versus its function would work in cells having either wild type or mutant AR as well as be independent of androgen synthesis pathways. Previously, using a phenotypic screen in androgen-independent PC cells we identified a small molecule inhibitor of AR, ARTIK-52. Treatment with ARTIK-52 caused the loss of AR protein and death of AR-positive, but not AR-negative, PC cells. Here we present data that ARTIK-52 induces degradation of AR mRNA through a mechanism that we were unable to establish. However, we found that ARTIK-52 is toxic to breast cancer (BC) cells expressing AR, although they were not sensitive to AR knockdown, suggesting an AR-independent mechanism of toxicity. Using different approaches we detected that ARTIK-52 induces replication-dependent double strand DNA breaks exclusively in cancer cells of prostate and breast origin, while not causing DNA damage, or any toxicity, in normal cells, as well as in non-PC and non-BC tumor cells, independent of their proliferation status. This amazing specificity, combined with such a basic mechanism of toxicity, makes ARTIK-52 a potentially useful tool to discover novel attractive targets for the treatment of BC and PC. Thus, phenotypic screening allowed us to identify a compound, whose properties cannot be predicted based on existing knowledge and moreover, uncover a barely known link between AR and DNA damage response in PC and BC epithelial cells.  相似文献   

4.
Protein arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and plays an important role in many cellular processes. Aberrant PRMT expression has been observed in several common cancer types; however, their precise contribution to the cell transformation process is not well understood. We previously reported that the PRMT1 gene generates several alternatively spliced isoforms, and our initial biochemical characterization of these isoforms revealed that they exhibit distinct substrate specificity and subcellular localization. We focus here on the PRMT1v2 isoform, which is the only predominantly cytoplasmic isoform, and we have found that its relative expression is increased in breast cancer cell lines and tumors. Specific depletion of PRMT1v2 using RNA interference caused a significant decrease in cancer cell survival due to an induction of apoptosis. Furthermore, depletion of PRMT1v2 in an aggressive cancer cell line significantly decreased cell invasion. We also demonstrate that PRMT1v2 overexpression in a non-aggressive cancer cell line was sufficient to render them more invasive. Importantly, this novel activity is specific to PRMT1v2, as overexpression of other isoforms did not enhance invasion. Moreover, this activity requires both proper subcellular localization and methylase activity. Lastly, PRMT1v2 overexpression altered cell morphology and reduced cell-cell adhesion, a phenomenon that we convincingly linked with reduced β-catenin protein expression. Overall, we demonstrate a specific role for PRMT1v2 in breast cancer cell survival and invasion, underscoring the importance of identifying and characterizing the distinct functional differences between PRMT1 isoforms.  相似文献   

5.
6.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

7.
《Autophagy》2013,9(12):1798-1810
We have previously shown that elevated expression of mitotic kinase aurora kinase A (AURKA) in cancer cells promotes the development of metastatic phenotypes and is associated clinically with adverse prognosis. Here, we first revealed a clinically positive correlation between AURKA and autophagy-associated protein SQSTM1 in breast cancer and further demonstrated that AURKA regulated SQSTM1 through autophagy. Indeed, depletion by siRNA or chemical inhibition of AURKA by the small molecule VX-680 increased both the level of microtubule-associated protein 1 light chain 3-II (LC3-II) and the number of autophagosomes, along with decreased SQSTM1. Conversely, overexpression of AURKA inhibited autophagy, as assessed by decreased LC3-II and increased SQSTM1 either upon nutrient deprivation or normal conditions. In addition, phosphorylated forms of both RPS6KB1 and mechanistic target of rapamycin (MTOR) were elevated by overexpression of AURKA whereas they were suppressed by depletion or inhibition of AURKA. Moreover, inhibition of MTOR by PP242, an inhibitor of MTOR complex1/2, abrogated the changes in both LC3-II and SQSTM1 in AURKA-overexpressing BT-549 cells, suggesting that AURKA-suppressed autophagy might be associated with MTOR activation. Lastly, repression of autophagy by depletion of either LC3 or ATG5, sensitized breast cancer cells to VX-680-induced apoptosis. Similar findings were observed in cells treated with the autophagy inhibitors chloroquine (CQ) and bafilomycin A1 (BAF). Our data thus revealed a novel role of AURKA as a negative regulator of autophagy, showing that AURKA inhibition induced autophagy, which may represent a novel mechanism of drug resistance in apoptosis-aimed therapy for breast cancer.  相似文献   

8.
We have demonstrated that in normal and b/b rat red blood cells (RBCs) hsp70-like protein (heat shock protein 70-like) is localized in the cytosol and it is exported via exosomes during in vivo reticulocytes maturation. As we have presumed, in the mutant (b/b) rat, hsp70-like protein transfers from cytosol to the RBC membrane. In the normal rat RBCs this happens when those cells are submitted to heat stress conditions. Our study indicates that the presence of hsp70-like protein in the b/b rat RBC plasma membrane is consistent with a primary defect and is not a consequence of life long stress, i.e. hypoxia.  相似文献   

9.
Breast cancer is the most common malignancy among women worldwide. Kynureninase (KYNU) located in 2q22.2, which was associated with tryptophan utilization and metabolic diseases including cardiac, renal and limb defects syndrome 2. However, the role of KYNU in breast cancer (BC) development remains unclear. The expression of KYNU was examined by immunohistochemistry (IHC) in 137 primary BC tissues, and the correlation of KYNU expression with clinical pathological characteristics and the biomarkers (ER, PR, HER2, E‐cad and Ki‐67) was analysed. The role of KYNU in cancer cell proliferation, tumour growth and development was evaluated by MTT assay, soft agar colony formation assay and xenograft mouse models. Among 137 primary BC tissues, 46.7% (64/137) had high KYNU expression (IHC scores >4) while 53.3% (73/137) had low KYNU expression (IHC scores ≤4). The expression of KYNU was positively correlated with the expressions of ER (P = .002), PR (P = .007) and E‐cad (P = .03), while negatively associated with tumour grade (P = .008), tumour stage (P < .001) and the expressions of HER2 (P = .04) and Ki‐67 (P = .019). Overexpression of KYNU significantly inhibited cell proliferation in cell culture, colony formation in soft agar and xenograft BC development in NOD/SCID mice. Kynureninase suppresses BC cell proliferation, tumour growth and development. Kynureninase may function as a tumour suppressor in BC.  相似文献   

10.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), formed by phosphorylation of sphingosine, has been implicated in cell growth, suppression of apoptosis, and angiogenesis. In this study, we have examined the contribution of intracellular S1P to tumorigenesis of breast adenocarcinoma MCF-7 cells. Enforced expression of sphingosine kinase type 1 (SPHK1) increased S1P levels and blocked MCF-7 cell death induced by anti-cancer drugs, sphingosine, and TNF-alpha. SPHK1 also conferred a growth advantage, as determined by proliferation and growth in soft agar, which was estrogen dependent. While both ERK and Akt have been implicated in MCF-7 cell growth, SPHK1 stimulated ERK1/2 but had no effect on Akt. Surprisingly, parental growth of MCF-7 cells was only weakly stimulated by S1P or dihydro-S1P, ligands for the S1P receptors which usually mediate growth effects. When injected into mammary fat pads of ovariectomized nude mice implanted with estrogen pellets, MCF-7/SPHK1 cells formed more and larger tumors than vector transfectants with higher microvessel density in their periphery. Collectively, our results suggest that SPHK1 may play an important role in breast cancer progression by regulating tumor cell growth and survival.  相似文献   

11.
We report the potent and selective cytotoxicity of the crude aqueous leaf extract from the medicinal plant, Pithecellobium dulce toward the human breast cancer cells (MCF‐7), but not the normal cells (MCF‐10A). The cytotoxicity was found to be dose and time dependent, as 300 µg/mL of the extract decreased the cell viability to 50% (IC50) in 48 h. The induction of apoptosis in the breast cancer cells after treatment was confirmed by significant percentage (24.7%), of early apoptotic cells (AnnexinV +Propidium Iodide_) in treated cells as compared to control cells (3.5%). We observed a significant upregulation in the mRNA expression of various pro‐apoptotic gene such as Bax (21.1 folds), p21(14.4 folds), p53 (11.7 folds), TNF (10.2 folds) and fas (6.3 folds) after treatment as compared to untreated cells. On the other hand, the relative mRNA expression of anti‐apoptotic genes such as Bcl‐2, NF‐KB and Cdk was reduced. The selective upregulation of pro‐apoptotic gene and down regulation of specific anti‐apoptotic genes could be the inducing factor for apoptotic cell death in MCF‐7 cells after treatment with the herbal extract. We believe that our findings provide a foundation for further studies on this formulation as a potential therapeutic candidate for breast cancer. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:756–766, 2016  相似文献   

12.
13.
The BRCA1 gene encodes a large multidomain protein of 1863 residues, mutations in which lead to breast cancer. Studies to elucidate the mechanisms by which BRCA1 prevents tumour formation have been restricted by the size of the protein. Unable to purify large amounts of the full-length protein, we have identified a fragment of BRCA1, amino acid residues 230-534, that when cloned into the expression vector pET 22b and expressed in Escherichia coli is found predominantly in the soluble portion of the cell lysate. The resulting protein was purified to homogeneity and studies reveal that BRCA1 230-534 binds specifically to four-way junction DNA when compared to duplex and single-stranded DNA.  相似文献   

14.
Most human breast tumors start as estrogen-dependent, but during the course of the disease become refractory to hormone therapy. The transition of breast tumors from estrogen dependent to independent behavior may be regulated by autocrine and/or paracrine growth factor(s) that are independent of the estrogen receptor (ER). We have investigated the role(s) of NDF (neu-differentiation factor) in the biology of estrogen positive breast cancer cells by using MCF-7 cells as a model system. Treatment of MCF-7 cells with human recombinant NDF-β2 (NDF) inhibited the ER expression by 70% and this was associated with growth stimulation in an estrogen-independent manner. To explore the mechanism(s) of action of NDF in MCF-7 cells, we examined the expression of NDF-inducible gene products. We report here that NDF stimulated the levels of expression of a 46 kD protein (p46) (in addition to few minor proteins) in ER positive breast cancer cells including MCF-7, T-47-D, and ZR-75-R cells but not in ER negative breast cancer cells including MDA-231, SK-BP-3, and MDA-468 cells. This effect of NDF was due to induction in the rate of synthesis of new p46. The observed NDF-mediated induction of p46 expression was specific as there was no such effect by epidermal growth factor or 17-β-estradiol, and inclusion of actinomycin D partially inhibited the p46 induction elicited by NDF. NDF-inducible stimulation of p46 expression was an early event (2–6 h) which preceded the period of down-regulation of ER expression by NDF. These results support the existence of NDF-responsive specific cellular pathway(s) that may regulate ER, and these interactions could play a role(s) in hormone-independence of ER positive breast cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24−/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24−/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.  相似文献   

17.
The role of histone deacetylase 3 (HDAC3) is to repress the expression of various genes by eliminating acetyl group from histone. Thus, the regulation of HDAC3 activity is essential to maintain cellular homeostasis. In this study, we found that HDAC3 interacts with c-Src kinase. However, the interaction between HDAC3 and c-Src was previously reported, it has still been ambiguous whether c-Src phosphorylates HDAC3 and affects the function of HDAC3. First, we confirmed that HDAC3 directly binds to c-Src, and c-Src identified to interact with C-terminal domain (277–428 a.a.) of HDAC3. c-Src also phosphorylated three tyrosine sites of HDAC3 at tyrosine 325, 328, and 331. Importantly, wild-type c-Src increases HDAC3 activity, but not mutant c-SrcK298M (kinase inactive form). When these tyrosine residues are all substituted for alanine residues, the deacetylase activity of mutant HDAC3 was abolished. In addition, a proliferation of HER2-positive breast cancer cells expressing phosphorylation deficient mutant HDAC3 is decreased in comparison with control cells. Thus, our findings suggested that phosphorylation of HDAC3 by c-Src kinase regulates the HDAC3 activity and the proliferation of breast cancer cells.  相似文献   

18.
19.
20.
Background: Resistance to cisplatin (Cisp) in the treatment of breast cancer is a major obstacle. Alpha-lipoic acid (ALA) has both antioxidant and oxidant properties. ALA has been used on stimulation mechanisms of apoptosis and oxidative stress in the treatment of cancer with a combination of chemotherapeutic agents, although its role on molecular mechanisms in the cancer cells has not been clarified yet. The aim of this study was to evaluate if a combination therapy of ALA with Cisp can alter the effect of this chemotherapy drug in the MCF-7 breast cancer cells.

Materials: The MCF-7 cells were divided into four treatment groups as control, Cisp (0.025?mM), ALA (0.05?mM), and Cisp?+?ALA.

Results: Apoptosis, mitochondrial membrane depolarization, reactive oxygen species (ROS) production, lipid peroxidation, PARP1, caspase 3 and 9 expression levels are increased through activating TRPV1 in the cells by the Cisp and ALA treatments, although cell viability, reduced glutathione and glutathione peroxidase (GPx) values were decreased by the treatments. The Cisp and ALA-induced increase of intracellular free Ca2+ concentration was decreased with the TRPV1 blocker, capsazepine.

Conclusions: Apoptosis and oxidant effects of Cisp were increased by activation of TRPV1 channels, but its action on the values was further increased by the ALA treatment. Combination therapy of ALA and Cisp could be used as an effective strategy in the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号