首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence and kinetic properties of phosphoribulokinase purified from Chlamydomonas reinhardtii were determined and compared with the spinach (Spinacea oleracea) enzyme. Chlamydomonas phosphoribulokinase was purified to apparent homogeneity, with a specific activity of 410 micromoles per minute per milligram. Polyclonal antibodies to the purified protein were used to isolate a Chlamydomonas cDNA clone, which, upon sequencing, was found to contain the entire coding region. The transit peptide cleavage site was determined by Edman analysis of the mature protein. The precursor protein consists of a 31 amino acid transit peptide and a 344 amino acid mature polypeptide. The mature polypeptide has a calculated molecular weight of 38.5 kilodaltons and a pl of 5.75. The Vmax of the purified enzyme was 465 micromoles per minute per milligram, with apparent Km values of 62 micromolar ATP and 56 micromolar ribulose 5-phosphate. Immunoblot analysis indicated antigenic similarity and a similar subunit size for the enzyme from five higher plant species and Chlamydomonas. Southern blot analysis of Chlamydomonas genomic DNA indicated the presence of a single phosphoribulokinase gene. Comparison of the mature proteins from Chlamydomonas and spinach revealed 86 amino acid differences in primary structure (25% of the total) without a major difference in kinetic properties. The transit peptides of the spinach and Chlamydomonas proteins possessed little sequence homology.  相似文献   

2.
UDP-Galactose 4′-epimerase was purified ca 800-fold through a multi-step procedure which included affinity chromatography using NAD+ -Agarose. Three forms of the enzyme were separated by gel-filtration but only the major form was purified. The pH optimum of the enzyme was 9.5. Exogenous NAD+ was not required for enzymic activity but its removal caused inactivation. The enzyme was unstable below pH 7.0 but stable at pH 8.0 in the presence of glycerol and at ?20° for two months. The equilibrium constant for the enzyme-catalysed reaction was 3.2 ± 0.15. The Km for UDP-galactose and UDP-glucose were 0.12 mM and 0.25 mM, respectively. The inhibition by NADH was competitive, with a Ki of 5 μM. The MW of the enzyme was 78 000; the two minor forms showed the values of 158 000 and 39 000, respectively.  相似文献   

3.
Mitochondria from green pea (Pisum sativum) leaves were purified free of peroxisomes and chlorophyll contamination and examined for their biotin content. The bulk of the bound biotin detected in plant mitochondria was shown to be associated with the matrix space to a concentration of about 13 micromolar, and no free biotin was detected. Western blot analysis of mitochondrial polypeptides using horseradish peroxidase-labeled streptavidin revealed a unique biotin-containing polypeptide with a molecular weight of 76,000. This polypeptide was implicated as being the biotinylated subunit of 3-methylcrotonyl-coenzyme A (CoA) carboxylase. Fractionation of pea leaf protoplasts demonstrated that this enzyme activity was located largely in mitochondria. The 3-methylcrotonyl-CoA carboxylase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of mitochondria. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8.3 in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 0.05 millimolar; ATP, 0.16 millimolar; HCO3, 2.2 millimolar. The involvement of 3-methylcrotonyl-CoA carboxylase in the leucine degradation pathway in plant mitochondria is proposed.  相似文献   

4.
An enzyme catalyzing the transfer of the glucosyl moiety of UDP-glucose to the 5-hydroxyl group of cyanidin-3-rhamnosyl-(1→6)-glucoside has been demonstrated in petal extracts of Silene dioica plants. This glucosyltransferase activity was not detectable in green parts of these plants. The enzyme activity is controlled by a single dominant gene M; no glucosyltransferase activity could be demonstrated in petals of m/m plants. The enzyme was purified eightyfold by PVP and Sephadex G50 chromatography. The glucosyltransferase had a pH optimum of 7.4, had a molecular weight of about 55,000, was stimulated by divalent metal ions, and had a “true Km” value of 0.5×10?3 m for UDP-glucose and 3.6×10?3 m for cyanidin-3-rhamnosylglucoside. Pelargonidin-3-rhamnosylglucoside also could serve as acceptor. The enzyme did not catalyze the glucosylation of the 5-hydroxyl group of cyanidin-3-glucoside, although in petals of M/- n/n mutants cyanidin-3,5-diglucoside is present. ADP-glucose could not serve as a glucosyl donor.  相似文献   

5.
The N-acetylglucosamine (GlcNAc) transferase that catalyzes the formation of dolichyl-pyrophosphoryl-GlcNAc-GlcNAc from UDP-GlcNAc and dolichyl-pyrophosphoryl-GlcNAc was solubilized from the microsomal enzyme fraction of mung beans with 1.5% Triton X-100, and was purified 140-fold on columns of DE-52 and hydroxylapatite. The partially purified enzyme preparation was quite stable when stored in 20% glycerol and 0.5 millimolar dithiothreitol, and was free of GlcNAc-1-P transferase and mannosyl transferases. The GlcNAc transferase had a sharp pH optimum of 7.4 to 7.6 and the Km for dolichyl-pyrophosphoryl-GlcNAc was 2.2 micromolar and that for UDP-GlcNAc, 0.25 micromolar. The enzyme showed a strong requirement for the detergent Triton X-100 and was stimulated somewhat by the divalent cation Mg2+. Uridine nucleotides, especially UDP and UDP-glucose inhibited the enzyme as did the antibiotic, diumycin. However, a variety of other antibiotics including tunicamycin were without effect. The product of the reaction was characterized as dolichyl-pyrophosphoryl-GlcNAc-GlcNAc.  相似文献   

6.
UDP-glucose:coniferyl alcohol glucosyltransferase was isolated from 10-day-old, darkgrown cell suspension cultures of Paul's scarlet rose. The enzyme was purified 120-fold by (NH4)2SO4 fractionation and chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-100. The enzyme has a pH optimum of 7.5 in Tris-HCl buffer, required an -SH group for activity, and is inhibited by ?-chloromercuribenzoate and EDTA. Its molecular weight is estimated to be 52,000. The enzyme is specific for the glucosylation of coniferyl alcohol (Km 3.3 × 10?6 M) and sinapyl alcohol (Km 5.6 × 10?6 M). With coniferyl alcohol as substrate the apparent Km value for UDP-glucose is 2 × 10?6m. The enzyme activity can be detected in a number of callus-tissue and cell-suspension cultures. The role of this enzyme is believed to be to catalyze the transfer of glucose from UDPG to coniferyl (or sinapyl) alcohol as storage intermediates in lignin biosynthesis.  相似文献   

7.
The levels of activity of 2-phosphoglycolate phosphatase in the green algae, Chlamydomonas reinhardtii and Chlorella vulgaris, were in the range of 37 to 60 micromoles per milligram chlorophyll per hour and in the blue-green algae, Anacystis nidulans and Anabaena variabilis were 204 to 310 micromoles per milligram chlorophyll per hour. The activity in each species was similar regardless of whether the algae were grown with air or 5% CO2 in air. The enzyme purified 530-fold from Chlamydomonas was stable, had a broad pH optimum between 6 and 8.5, and was specific for the hydrolysis of P-glycolate with a Km of 23 micromolar. The enzyme purified 18-fold from Anacystis was labile, had a sharp pH optimum at 6.3, and was also specific for P-glycolate with a Km of 94 micromolar. The molecular weight of the enzyme from Chlamydomonas was estimated to be 92,000 by gel filtration.

The phosphatase from both sources required a divalent cation for activity. The Chlamydomonas enzyme was most effectively activated by Co2+, but was also activated by Mg2+ (Ka = 30 micromolar), Mn2+, and Zn2+. The Anacystis enzyme was most effectively activated by Mg2+ (Ka = 140 micromolar), and was also activated by Co2+ and Mn2+, but not by Zn2+. Anions were also required for maximum activity of the enzyme from both sources. The Chlamydomonas enzyme was activated about 2- to 3-fold by chloride (Ka = 140 micromolar), bromide, nitrate, bicarbonate (Ka = 600 micromolar) and formate. The Anacystis enzyme was activated over 10-fold by chloride (Ka = 870 micromolar), bromide, iodide, and nitrate, but was not activated by bicarbonate or formate.

The properties of the algal enzymes were similar to those previously reported for higher plants. The levels and kinetic properties of the enzyme seemed sufficient to account for the flux through the glycolate pathway that occurs in these algae. The phosphatase was not associated with the ribulose 1,5-bisphosphate carboxylase/oxygenase responsible for P-glycolate formation in the carboxysomes of Anacystis.

  相似文献   

8.
Soybean (Glycine soja var Beeson) formate dehydrogenase has been isolated, purified, and partially characterized by affinity chromatography. The enzyme is a dimer having a total molecular weight of 100,000 and a subunit weight of 47,000. It has activity over a broad pH range, is stable for months at 4°C, and has Km values of 0.6 millimolar and 5.7 micromolar for formate and NAD, respectively.  相似文献   

9.
Cinnamyl alcohol dehydrogenase (CAD) is an enzyme involved in lignin biosynthesis. In this paper, we report the purification of CAD to homogeneity from tobacco (Nicotiana tabacum) stems. The enzyme is low in abundance, comprising approximately 0.05% of total soluble cell protein. A simple and efficient purification procedure for CAD was developed. It employs three chromatography steps, including two affinity matrices, Blue Sepharose and 2′5′ ADP-Sepharose. The purified enzyme has a specific cofactor requirement for NADP and has high affinity for coniferyl alcohol (Km = 12 micromolar) and coniferaldehyde (Km = 0.3 micromolar). Two different sized polypeptide subunits of 42.5 and 44 kilodaltons were identified and separated by reverse-phase HPLC. Peptide mapping and amino acid composition analysis of the polypeptides showed that they are closely related, although not identical.  相似文献   

10.
The mode of inhibition of UDP, one of the products of the reaction catalyzed by (1→3)-β-d-glucan synthase in sugar beet (Beta vulgaris L.) was investigated. In the absence of added UDP, the enzyme, in the presence of Ca2+, Mg2+, and cellobiose, exhibited Michaelis-Menten kinetics and had an apparent Km of 260 micromolar for UDP-glucose. Complex effects on the kinetics of the (1→3)-β-d-glucan synthase were observed in the presence of UDP. At high UDP-glucose concentrations, i.e. greater than the apparent Km, UDP behaved as a competitive inhibitor with an apparent Ki of 80 micromolar. However, at low UDP-glucose concentrations, reciprocal plots of enzyme activity versus substrate concentration deviated sharply from linearity. This unusual effect of UDP is similar to that reported for fungal (1→3)-β-d-glucan synthase. However, papulacandin B, a potent inhibitor of this fungal enzyme, had no effect on the plant (1→3)-β-d-glucan synthase isolated from sugar beet petioles. The inhibitory effect of UDP was also compared with other known inhibitors of glucan synthases.  相似文献   

11.
Oligomeric structure and kinetic properties of NADP-malic enzyme, purified from sugarcane (Saccharam officinarum L.) leaves, were determined at either pH 7.0 and 8.0. Size exclusion chromatography showed the existence of an equilibrium between the dimeric and the tetrameric forms. At pH 7.0 the enzyme was found preferentially as a 125 kilodalton homodimer, whereas the tetramer was the major form found at pH 8.0. Although free forms of l-malate, NADP+, and Mg2+ were determined as the true substrates and cofactors for the enzyme at the two conditions, the kinetic properties of the malic enzyme were quite different depending on pH. Higher affinity for l-malate (Km = 58 micromolar), but also inhibition by high substrate (Ki = 4.95 millimolar) were observed at pH 7.0. l-Malate saturation isotherms at pH 8.0 followed hyperbolic kinetics (Km = 120 micromolar). At both pH conditions, activity response to NADP+ exhibited Michaelis-Menten behavior with Km values of 7.1 and 4.6 micromolar at pH 7.0 and 8.0, respectively. Negative cooperativity detected in the binding of Mg2+ suggested the presence of at least two Mg2+ - binding sites with different affinity. The Ka values for Mg2+ obtained at pH 7.0 (9 and 750 micromolar) were significantly higher than those calculated at pH 8.0 (1 and 84 micromolar). The results suggest that changes in pH and Mg2+ levels could be important for the physiological regulation of NADP-malic enzyme.  相似文献   

12.
We have identified a 52 kilodalton polypeptide as being a likely candidate for the catalytic subunit of the UDP-glucose: (1→3)-β-glucan (callose) synthase of developing fibers of Gossypium hirsutum (cotton). Such a polypeptide migrates coincident with callose synthase during glycerol gradient centrifugation in the presence of EDTA, and can be directly photolabeled with the radioactive substrate, α-[32P]UDP-glucose. Interaction with the labeled probe requires Ca2+, a specific activator of callose synthase which is known to lower the Km of higher plant callose synthases for the substrate UDP-glucose. Using this probe and several other related ones, several other proteins which interact with UDP-glucose were also identified, but none satisfied all of the above criteria for being components of the callose synthase.  相似文献   

13.
A salicylic acid (SA)-inducible uridine 5′-diphosphate (UDP)-glucose:SA 3-O-glucosyltransferase was extracted from oat (Avena sativa L. cv Dal) roots. Reverse phase high-performance liquid chromatography or anion exchange chromatography was used to separate SA from the product, β-O-d-glucosylsalicylic acid. The soluble enzyme was purified 176-fold with 5% recovery using a combination of pH fractionation, anion exchange, gel filtration, and chromatofocusing chromatography. The partially purified protein had a native molecular weight of about 50,000, an apparent isoelectric point at pH 5.0, and maximum activity at pH 5.5. The enzyme had a Km of 0.28 mm for UDP-glucose and was highly specific for this sugar donor. More than 20 hydroxybenzoic and hydroxycinnamic acid derivatives were assayed as potential glucose acceptors. UDP-glucose:SA 3-O-glucosyltransferase activity was highly specific toward SA (Km = 0.16 mm). The enzyme was inhibited by UDP and uridine 5′-triphosphate but not by up to 7.5 mm uridine 5′-monophosphate.  相似文献   

14.
Farnesyl transferase (farnesyl pyrophosphate: isopentenyl pyrophosphate farnesyl transferase; geranylgeranyl pyrophosphate synthetase) was purified at least 400-fold from extracts of castor bean (Ricinus communis L.) seedlings that were elicited by exposure for 10 h to Rhizopus stolonifer spores. The purified enzyme was free of isopentenyl pyrophosphate isomerase and phosphatase activities which interfere with prenyl transferase assays. The purified enzyme showed a broad optimum for farnesyl transfer between pH 8 and 9. The molecular weight of the enzyme was estimated to be 72,000 ± 3,000 from its behavior on a calibrated G-100 Sephadex molecular sieving column. Mg2+ ion at 4 millimolar gave the greatest stimulation of activity; Mn2+ ion gave a small stimulation at 0.5 millimolar, but was inhibitory at higher concentrations. Farnesyl pyrophosphate (Km = 0.5 micromolar) in combination with isopentenyl pyrophosphate (Km = 3.5 micromolar) was the most effective substrate for the production of geranylgeranyl pyrophosphate. Geranyl pyrophosphate (Km = 24 micromolar) could replace farnesyl pyrophosphate as the allylic pyrophosphate substrate, but dimethylallyl pyrophosphate was not utilized by the enzyme. One peak of farnesyl transferase activity (geranylgeranyl pyrophosphate synthetase) and two peaks of geranyl transferase activity (farnesyl pyrophosphate synthetases) from extracts of whole elicited seedlings were resolved by DEAE A-25 Sephadex sievorptive ion exchange chromatography. These results suggest that the pathway for geranylgeranyl pyrophosphate synthesis in elicited castor bean seedlings involves the successive actions of two enzymes—a geranyl transferase which utilizes dimethylallypyrophosphate and isopentenyl pyrophosphate as substrates and a farnesyl transferase which utilizes the farnesyl pyrophosphate produced in the first step and isopentenyl pyrophosphate as substrates.  相似文献   

15.
An enzyme catalyzing the transfer of the glucosyl moiety of UDP-glucose to the 3-hydroxyl group of cyanidin has been demonstrated in petal extracts of Silene dioica mutants with cyanidin-3-O-glucoside in the petals. This transferase activity was also present in young rosette leaves and calyces of these plants. The highest glucosyltransferase activity was found in petals of opening flowers of young plants. The enzyme was purified ninetyfold by PVP and Sephadex chromatography. The glucosyltransferase had a pH optimum of 7.5, had a “true Km value” of 4.1×10?4 m for UDP-glucose and 0.4×10?4 m for cyanidin chloride, and was not stimulated by divalent metal ions. Both p-chloromercuribenzoate and HgCl2 inhibited the enzyme activity. Pelargonidin chloride and delphinidin chloride at reduced rates also served as substrates. The enzyme did not catalyze the glucosylation of the 3-hydroxyl group of flavonols or the 5-hydroxyl group of anthocyanins. ADP-glucose could not serve as a glucosyl donor. The results of Sephadex G150 chromatography suggest that the glucosyltransferase can exist as dimer of about 125,000 daltons and as active monomers of 60,000 daltons. The genetic control of the glucosyltransferase activity is discussed.  相似文献   

16.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

17.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

18.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

19.
Formation of UDP-Xylose and Xyloglucan in Soybean Golgi Membranes   总被引:2,自引:2,他引:0       下载免费PDF全文
Soybean (Glycine max) membranes co-equilibrating with Golgi vesicles in linear sucrose gradients contained UDP-glucuronate carboxy-lyase and xyloglucan synthase activities. Digitonin solubilized and increased the activity of the membrane-bound UDP-glucuronate carboxy-lyase. UDP-xylose did not inhibit the transport of UDP-glucuronate into the lumen of Golgi vesicles but repressed the decarboxylation of the translocated UDP-glucuronate. The results suggest that UDP-glucuronate is transported into the vesicles by a specific carrier and decarboxylated to UDP-xylose within the lumen. On incubation of UDP-[14C]glucuronate with Golgi membranes in the presence of UDP-glucose, [14C]xylose-labeled xyloglucan was formed. Although the Km value of UDP-glucuronate for the decarboxylation was 240 micromolar, the affinity of UDP-glucuronate for xyloglucan formation (31 micromolar) was similar to that of UDP-xylose (28 micromolar), suggesting a high turnover of UDP-xylose. The biosynthesis of UDP-xylose from UDP-glucuronate probably occurs in Golgi membranes, where xyloglucan subsequently forms from UDP-xylose and UDP-glucose.  相似文献   

20.
Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [β-32P]UDP-glucose to [32P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg2+ and was greatest at alkaline pH above 8. Kinetic analysis indicated a Km of ∼4 mM for UDP-glucose and ∼0.3 mM for ADP-ribose. Based on Vmax/Km values, the enzyme was ∼20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of Mr 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号