首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The GlnK and GlnB proteins are members of the pII signal transduction protein family, which is essential in nitrogen regulation due to this protein family's ability to sense internal cellular ammonium levels and control cellular response. The role of GlnK in nitrogen regulation has been studied in a variety of bacteria but previously has been uncharacterized in the purple nonsulfur anoxygenic phototropic bacterium Rhodopseudomonas palustris. R. palustris has tremendous metabolic versatility in its modes of energy generation and carbon metabolism, and it employs a sensitive nitrogen-ammonium regulation system that may vary from that of other commonly studied bacteria. In R. palustris, there are three annotated forms of pII proteins: GlnK1, GlnK2, and GlnB. Here we describe, for the first time, the characterization of GlnK1, GlnK2, and GlnB modifications as a response to nitrogen availability, thereby providing information about how this bacterium regulates the AmtB ammonium transporter and glutamine synthetase, which controls the rate of glutamate to glutamine conversion. Using a strategy of creating C-terminally tagged GlnK and GlnB proteins followed by tandem affinity purification in combination with top-down mass spectrometry, four isoforms of the GlnK2 and GlnB proteins and two isoforms of the GlnK1 protein were characterized at high resolution and mass accuracy. Wild-type or endogenous expression of all three proteins was also examined under normal ammonium conditions and ammonium starvation to ensure that the tagging and affinity purification methods employed did not alter the natural state of the proteins. All three proteins were found to undergo uridylylation under ammonium starvation conditions, presumably to regulate the AmtB ammonium transporter and glutamine synthetase. Under high-ammonium conditions, the GlnK1, GlnK2, and GlnB proteins are unmodified. This experimental protocol involving high-resolution mass spectrometry measurements of intact proteins provides a powerful method of examining the posttranslational modifications that play a crucial role in both the regulation of the AmtB ammonium transporter and glutamine synthetase within R. palustris.  相似文献   

4.
Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, and GlnK-DraT. These results corroborate earlier genetic data and in addition show that PII-dependent ammonium regulation of nitrogen fixation in R. capsulatus does not require additional proteins, like NifL in Klebsiella pneumoniae. In addition, we found interactions for the protein pairs GlnB-GlnB, GlnB-GlnK, NifA1-NifA1, NifA2-NifA2, and NifA1-NifA2, suggesting that fine tuning of the nitrogen fixation process in R. capsulatus may involve the formation of GlnB-GlnK heterotrimers as well as NifA1-NifA2 heterodimers. In order to identify new proteins that interact with GlnB and GlnK, we constructed an R. capsulatus genomic library for use in yeast two-hybrid studies. Screening of this library identified the ATP-dependent helicase PcrA as a new putative protein that interacts with GlnB and the Ras-like protein Era as a new protein that interacts with GlnK.  相似文献   

5.
6.
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.  相似文献   

7.
PII-like signalling molecules are trimeric proteins composed of 12-13 kDa polypeptides encoded by the glnB gene family. Heterologous expression of a cyanobacterial glnB gene in Escherichia coli leads to an inactivation of E. coli's own PII signalling system. In the present work, we show that this effect is caused by the formation of functionally inactive heterotrimers between the cyanobacterial glnB gene product and the E. coli PII paralogues GlnB and GlnK. This led to the discovery that GlnK and GlnB of E. coli also form heterotrimers with each other. The influence of the oligomerization partner on the function of the single subunit was studied using heterotrimerization with the Synechococcus PII protein. Uridylylation of GlnB and GlnK was less efficient but still possible within these heterotrimers. In contrast, the ability of GlnB-UMP to stimulate the adenylyl-removing activity of GlnE (glutamine synthetase adenylyltransferase/removase) was almost completely abolished, confirming that rapid deadenylylation of glutamine synthetase upon nitrogen stepdown requires functional homotrimeric GlnB protein. Remarkably, however, rapid adenylylation of glutamine synthetase upon exposing nitrogen-starved cells to ammonium was shown to occur in the absence of a functional GlnB/GlnK signalling system as efficiently as in its presence.  相似文献   

8.
In Escherichia coli, the ammonia channel AmtB and the P(II) signal transduction protein GlnK constitute an ammonium sensory system that effectively couples the intracellular nitrogen regulation system to external changes in ammonium availability. Binding of GlnK to AmtB apparently inactivates the channel, thereby controlling ammonium influx in response to the intracellular nitrogen status. We designed an N-terminally histidine-tagged version of AmtB with a native C-terminal region in order to purify the AmtB-GlnK complex. Purification revealed a stable and direct interaction between AmtB and GlnK, thereby showing for the first time that stability of the complex does not require other proteins. The stoichiometry of the complex was determined by two independent approaches, both of which indicated a 1:1 ratio of AmtB to GlnK. We also showed by mass spectrometry that only the fully deuridylylated form of GlnK co-purifies with AmtB. The purified complex allowed in vitro studies of dissociation and association of AmtB and GlnK. The interaction of GlnK with AmtB is dependent on ATP and is also sensitive to 2-oxoglutarate. Our in vitro data suggest that in vivo association and dissociation of the complex might not only be dependent on the uridylylation status of GlnK but may also be influenced by intracellular pools of ATP and 2-oxoglutarate.  相似文献   

9.
10.
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.  相似文献   

11.
12.
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.  相似文献   

13.
14.
PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 Å resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T‐loop of one subunit and the C‐loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T‐loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T‐loop makes direct contact with the γ‐phosphate of the ATP molecule replacing the Mg2+ position seen in the Methanococcus jannaschii GlnK1 structure. The C‐loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C‐terminal 310 helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.  相似文献   

15.
Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.  相似文献   

16.
Glutamine synthetase I (GSI) enzyme activity in Streptomyces coelicolor is controlled post-translationally by the adenylyltransferase (GlnE) as in enteric bacteria. Although other homologues of the Escherichia coli Ntr system (glnK, coding for a PII family protein; and glnD, coding for an uridylyltransferase) are found in the S. coelicolor genome, the regulation of the GSI activity was found to be different. The functions of glnK and glnD were analysed by specific mutants. Surprisingly, biochemical assay and two-dimensional PAGE analysis showed that modification of GSI by GlnE occurs normally in all mutant strains, and neither GlnK nor GlnD are required for the regulation of GlnE in response to nitrogen stimuli. Analysis of the post-translational regulation of GlnK in vivo by two-dimensional PAGE and mass spectrometry indicated that it is subject to both a reversible and a non-reversible modification in a direct response to nitrogen availability. The irreversible modification was identified as removal of the first three N-terminal amino acid residues of the protein, and the reversible modification as adenylylation of the conserved tyro-sine 51 residue that is known to be uridylylated in E. coli. The glnD insertion mutant expressing only the N-terminal half of GlnD was capable of adenylylating GlnK, but was unable to perform the reverse deadenylylation reaction in response to excess ammonium. The glnD null mutant completely lacked the ability to adenylylate GlnK. This work provides the first example of a PII protein that is modified by adenylylation, and demonstrates that this reaction is performed by a homologue of GlnD, previously described only as a uridylyltransferase enzyme.  相似文献   

17.
The Amt proteins are ammonium transporters that are conserved throughout all domains of life, being found in bacteria, archaea and eukarya. In bacteria and archaea, the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate enzyme activity and gene expression in response to the intracellular nitrogen status. We have now shown that in Escherichia coli and Azotobacter vinelandii, GlnK binds to the membrane in an AmtB-dependent manner and that GlnK acts as a negative regulator of the transport activity of AmtB. Membrane binding is dependent on the uridylylation state of GlnK and is modulated according to the cellular nitrogen status such that it is maximal in nitrogen-sufficient situations. The membrane sequestration of GlnK by AmtB represents a novel form of signal transduction in which an integral membrane transport protein functions to link the extracellular ammonium concentration to the intracellular responses to nitrogen status. The results also offer new insights into the evolution of P(II) proteins and a rationale for their trigonal symmetry.  相似文献   

18.
19.
Members of the Amt/Rh family of transporters are found almost ubiquitously in all forms of life. However, the molecular state of the substrate (NH3 or NH4+) has been the subject of active debate. At least for bacterial Amt proteins, the model emerging from computational, X-ray crystal and mutational analysis is that NH4+ is deprotonated at the exterior, conducted through the membrane as NH3, and reprotonated at the cytoplasmic interface. A proton concomitantly is transferred from the exterior to the interior, although the mechanism is unclear. Here we discuss recent evidence indicating that an important function of at least some eukaryotic and bacterial Amts is to act as ammonium sensors and regulate cellular metabolism in response to changes in external ammonium concentrations. This is now well documented in the regulation of yeast pseudohyphal development and filamentous growth. As well, membrane sequestration of GlnK, a PII signal transduction protein, by AmtB has been shown to regulate nitrogenase in some diazotrophs, and nitrogen metabolism in some Gram-positive bacteria. Formation of GlnK–AmtB membrane complexes might have other, as yet undiscovered, regulatory roles. This possibility is emphasized by the discovery in some genomes of genes for chimeric Amts with fusions to various regulatory elements.  相似文献   

20.
The Amt proteins are high affinity ammonium transporters that are conserved in all domains of life. In bacteria and archaea the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate many facets of nitrogen metabolism. We have now shown that Escherichia coli AmtB is inactivated by formation of a membrane-bound complex with GlnK. Complex formation is reversible and occurs within seconds in response to micromolar changes in the extracellular ammonium concentration. Regulation is mediated by the uridylylation/deuridylylation of GlnK in direct response to fluctuations in the intracellular glutamine pool. Furthermore under physiological conditions AmtB activity is required for GlnK deuridylylation. Hence the transporter is an integral part of the signal transduction cascade, and AmtB can be formally considered to act as an ammonium sensor. This system provides an exquisitely sensitive mechanism to control ammonium flux into the cell, and the conservation of glnK linkage to amtB suggests that this regulatory mechanism may occur throughout prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号