首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A continuous fluidized-bed bioreactor was developed for the decolourisation of cotton bleaching effluent with a wood rotting fungus. Different initial concentrations of effluent were tested with either glucose or starch as co-substrates. With this system, 75–80% colour removal was achieved with an initial A400 of 4.7, using a 3 day-retention time. It showed high and stable decolourisation activity in long term continuous operation. © Rapid Science Ltd. 1998  相似文献   

2.
We investigated the ability of Trametes versicolor and Pycnoporous cinnabarinus to metabolize triclosan. T. versicolor produced three metabolites, 2-O-(2,4,4'-trichlorodiphenyl ether)-beta-D-xylopyranoside, 2-O-(2,4,4'-trichlorodiphenyl ether)-beta-D-glucopyranoside, and 2,4-dichlorophenol. P. cinnabarinus converted triclosan to 2,4, 4'-trichloro-2'-methoxydiphenyl ether and the glucoside conjugate known from T. versicolor. The conjugates showed a distinctly lower cytotoxic and microbicidal activity than triclosan did.  相似文献   

3.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml(-1) in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter(-1) was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml(-1). These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter(-1) when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml(-1) (i.e., 360 mg liter(-1)) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter(-1). In this case, maximal activities were 3,900 and 4,660 nkat ml(-1), respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

4.
Summary A microbial consortium, PDW, was isolated capable of the rapid decolourisation of commercially important textile dyes under anaerobic conditions. Decolourisation was dependent upon the presence of a carbon and energy source in addition to the textile dyes. PDW was capable of dye decolourisation when utilising cheap and readily available carbon sources such lactose, starch and distillery waste. PDW removed 76% of colour from textile plant effluent after 3 days.  相似文献   

5.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

6.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml−1 in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter−1 was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml−1. These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter−1 when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml−1 (i.e., 360 mg liter−1) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter−1. In this case, maximal activities were 3,900 and 4,660 nkat ml−1, respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

7.
A 20-l packed-bed reactor filled with foamed glass beads was tested for the treatment of acetonitrile HPLC wastes. Aeration was provided by recirculating a portion of the reactor liquid phase through an aeration tank, where the dissolved oxygen concentration was kept at 6 mg/l. At a feeding rate of 0.77 g acetonitrile l–1 reactor day–1, 99% of the acetonitrile was removed; and 86% of the nitrogen present in acetonitrile was released as NH3, confirming that acetonitrile volatilization was not significant. Increasing the acetonitrile loading resulted in lower removal efficiencies, but a maximum removal capacity of 1.0 g acetonitrile l–1 reactor day–1 was achieved at a feeding rate of 1.6 g acetonitrile l–1 reactor day–1. The removal capacity of the system was well correlated with the oxygenation capacity, showing that acetonitrile removal was likely to be limited by oxygen supply. Microbial characterization of the biofilm resulted in the isolation of a Comamonas sp. able to mineralize acetonitrile as sole carbon, nitrogen and energy source. This organism was closely related to C. testosteroni (91.2%) and might represent a new species in the Comamonas genus. This study confirms the potential of packed-bed reactors for the treatment of a concentrated mixture of volatile pollutants.  相似文献   

8.
9.
Summary Phanerochaete chrysosporium decolourised 6 out of 9 synthetic textile dyes tested in the presence of glucose. 3 textile dyes were decolourised in the absence of a primary carbon source. Decolourisation of an artificial textile effluent was complete after 7 days, however, the role of lignin peroxidase was unclear.  相似文献   

10.
Monokaryotic Pycnoporus cinnabarinus strains were obtained from the dikaryotic strain I-938. One of these, designated MK18, consistently produced high laccase activity. In cultures of MK18 and I-938 where ferulic acid was added as laccase inducer, laccase activity was enhanced about 2.5-fold reaching 3400 U/l for the MK18 strain. Laccase was purified to homogeneity and under the selected growth conditions, only one isoform of the enzyme was produced. The N-terminal sequence was similar to the amino terminal sequence of laccase II from Trametes versicolor. The enzyme was stable at 60 C for more than 1 h.  相似文献   

11.
Biodegradation of nonylphenol in a continuous packed-bed bioreactor   总被引:1,自引:0,他引:1  
A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h–1 and a removal rate of 4.3 mg nonylphenol day–1, resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h–1 from artificially contaminated soil (1 g nonylphenol kg–1 soil) and a real contaminated soil (0.19 g nonylphenol kg–1 soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption.  相似文献   

12.
AIMS: Laccase production by the monokaryotic strain Pycnoporus cinnabarinus ss3 was studied using ethanol as inducer in the culture medium. METHODS AND RESULTS: The effect of ethanol was tested at 10, 20, 30, 35 and 45 g l-1 and compared with that of ferulic acid, known until now as the most efficient inducer for laccase expression by P. cinnabarinus ss3. In the presence of 35 g l-1 ethanol, laccase activity (266 600 U l-1) and productivity (19 000 U l-1 day-1) were nine and fivefold higher compared with ferulic acid-induced cultures, and 155- and 65-fold higher compared with non-induced cultures, respectively. In vivo, ethanol added to the culture medium of P. cinnabarinus ss3 favoured a continuous and high expression of laccase gene. Under these conditions, P. cinnabarinus ss3 produced preferentially the isoenzyme LAC I. Ethanol added in vitro to the purified P. cinnabarinus ss3 laccase typically inhibited the enzymatic activity. CONCLUSIONS: In spite of an initial inhibitory effect on mycelial growth, ethanol was shown to be a very strong inducer for laccase expression by P. cinnabarinus ss3 allowing an average yield of 1-1.5 g l-1 laccase. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identified P. cinnabarinus ss3 as an outstanding producer of laccase in the presence of ethanol as inducer. Ethanol is an inexpensive agricultural by-product and the process is simple to scale-up for industrial production.  相似文献   

13.
In the present study we examined the performance of a thermoalkalophilic bacterial consortium, where the predominant strain was Bacillus sp. SF, in the degradation of Reactive Black 5 (RB5). We used a reactor working in continuous mode and investigated the effects of pH, hydraulic retention time (HRT) and several added salts on colour and chemical oxygen demand (COD) reductions. For the chosen operational conditions (pH 9, 55 degrees C and HRT of 12 h) the efficiencies achieved were 91.2 +/- 0.8 % for colour removal and 81.2% for COD removal. The system tolerated, with no significant decrease in colour removal efficiency, 30 g/L Na(2)SO(4), Na(2)CO(3) or NaCl. The latter two salts, however, led to a reduction in COD removal of 30% and 50%, respectively. The system proved to be very effective in the decolourisation of C.I. RB5 under alkaline conditions and at a comparatively high temperature.  相似文献   

14.
Selection of Pycnoporus cinnabarinus strains for laccase production   总被引:4,自引:0,他引:4  
A comparison of Pycnoporus cinnabarinus strains for laccase production was carried out. A dikaryotic strain, I-937 strain, producing a high level of laccase (9500 U l(-1)) was selected. The study of the life cycle in vitro of this dikaryotic strain led to isolation of monokaryons. Forty-eight monokaryotic strains were isolated and screened for laccase production. One of these strains, ss3, produced a higher level of laccase than the parental strain I-937. The maximum production reached 29000 U l(-1) in medium supplemented with ferulic acid.  相似文献   

15.
Summary Pyncnoporus cinnabarinus (Polyporaceae) is able to produce methylanthranilate in liquid cultures. Study of the culture conditions of P. cinnabarinus IP I-937 has permitted increase in the aroma productivity by a factor of 16. A low nitrogen concentration, with maltose as carbon source, was required; the culture pH was uncontrolled. The inoculum nature and concentration greatly influence on production: best results were obtained with conidia from a late harvest, used at a rate of 2 × 105 spores/ml. Under these conditions, 18.7 mg methylanthranilate/l was produced after 5 days of culture. Aroma production is probably connected with the biosynthesis of phenoxazinones, which are characteristic pigments of the genus Pycnoporus. Offprint requests to: B. Gross  相似文献   

16.
We have cloned and sequenced a gene encoding cellobiose dehydrogenase (CDH) from Pycnoporus cinnabarinus (Pci). PCR primers that may recognize a homologous cdh were designed using regions of complete conservation of amino acid sequence within the known sequences of Trametes versicolor (Tv) and Phanerochaete chrysosporium (Pc) CDH. Upstream primers hybridized to regions encoding the heme domain, whereas downstream primers recognized highly conserved regions within the flavin domain. Eight different primer pairs yielded three PCR products close in size to the control amplification, which used cloned Tv cdh as template. The PCR products that were close to the control size were cloned, and one of these, a 1.8-kb product, was completely sequenced. The PCR product was highly homologous to both Tv and Pch cdh, and contained eight putative introns. The cloned product was used to isolate a full-length clone encoding CDH from a Pci genomic library. Pci cdh encoded a protein with 83% identity with Tv CDH and 74% identity with Pch CDH. Northern blot analysis revealed that Pci cdh was transcribed as a single mRNA species and was expressed in the presence of cellulose as the carbon source.  相似文献   

17.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

18.
The ability of the Ralstonia eutropha cells to utilize formaldehyde (FA) as the only source of carbon and energy was studied in the kissiris-immobilized cell bioreactor (KICB) in batch-recirculation and continuous modes of operation. In batch-recirculation experiments, the test bacterium could tolerate concentrations of FA up to 1,400 mg/L at 30°C and aeration rate equal to 0.75 vvm (r S = 7.25 mg/L/h, q S = 0.019 gFA/gcell/h). However, further increase of initial FA concentration resulted in degradation reaction of FA to stop at 1,600 mg/L. Results of continuous mode experiments showed that the biodegradation performance of the KICB was dependent on both feed flow rate and inlet FA concentration parameters. The optimum feed flow rate which corresponded to the highest biodegradation rate (r S = 240.3 mg/L/h) was observed at Q = 18 mL/min when KICB did not operate under the external mass transfer limiting regime. Substrate inhibition kinetics (Edwards and Luong equations) were used to describe the experimental specific degradation rates data. According to the Luong model, the values of the maximum specific degradation rate (q max), half-saturation coefficient (K S), the maximum allowable FA concentration (S m), and the shape factor (n) were 0.178 gFA/gcell/h, 250.9 mg/L, 1,600 mg/L, and 1.86, respectively.  相似文献   

19.
Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.  相似文献   

20.
Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号