首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the 5' untranslated regions (5'-UTRs) of all three serotypes of the Sabin vaccine strains are known to be major determinants of the attenuation phenotype. To further understand the functional basis of the attenuation phenotype caused by mutations in the 5'-UTR, we studied their effects on viral replication, translation, and the interaction of the viral RNA with cell proteins. A mutation at base 472 (C472U), which attenuates neurovirulence in primates and mice, was previously found to reduce viral replication and translation in neuroblastoma cells but not in HeLa cells. This mutation reduced cross-linking of the poliovirus 5'-UTR to polypyrimidine tract-binding protein (pPTB) in neuroblastoma cells but not in HeLa cells. These defects were absent in a neurovirulent virus with C at nucleotide 472. When C472U and an additional mutation, G482A, were introduced into the 5'-UTR, the resulting virus was more attenuated, had a replication and translation defect in both HeLa cells and neuroblastoma cells, and cross-linked poorly to pPTB from both cell types. A neurovirulent revertant of this virus (carrying U472C, G482A, and C529U) no longer had a replication defect in HeLa and SH-SY5Y cell lines and cross-linked with pPTB to wild-type levels. The results suggest that the attenuating effects of the mutation C472U may result from an impaired interaction of the 5'-UTR with pPTB in neural cells, which reduces viral translation and replication. Introduction of a second mutation, G482A, into the 5'-UTR extends this defect to HeLa cells.  相似文献   

2.
Most poliovirus strains infect only primates. The host range (HR) of poliovirus is thought to be primarily determined by a cell surface molecule that functions as poliovirus receptor (PVR), since it has been shown that transgenic mice are made poliovirus sensitive by introducing the human PVR gene into the genome. The relative levels of neurovirulence of polioviruses tested in these transgenic mice were shown to correlate well with the levels tested in monkeys (H. Horie et al., J. Virol. 68:681-688, 1994). Mutants of the virulent Mahoney strain of poliovirus have been generated by disruption of nucleotides 128 to 134, at stem-loop II within the 5' noncoding region, and four of these mutants multiplicated well in human HeLa cells but poorly in mouse TgSVA cells that had been established from the kidney of the poliovirus-sensitive transgenic mouse. Neurovirulence tests using the two animal models revealed that these mutants were strongly attenuated only in tests with the mouse model and were therefore HR mutants. The virus infection cycle in TgSVA cells was restricted by an internal ribosomal entry site (IRES)-dependent initiation process of translation. Viral protein synthesis and the associated block of cellular protein synthesis were not observed in TgSVA cells infected with three of four HR mutants and was evident at only a low level in the remaining mutant. The mutant RNAs were functional in a cell-free protein synthesis system from HeLa cells but not in those from TgSVA and mouse neuroblastoma NS20Y cells. These results suggest that host factor(s) affecting IRES-dependent translation of poliovirus differ between human and mouse cells and that the mutant IRES constructs detect species differences in such host factor(s). The IRES could potentially be a host range determinant for poliovirus infection.  相似文献   

3.
A base change from C to U at position 472 of the 5' noncoding region of the poliovirus genome is known to be a major determinant of attenuation in the P3/Sabin vaccine strain. To determine the biochemical basis for the attenuated phenotype imparted by this mutation, a cell line in which replication of neurovirulent and attenuated viruses could be distinguished was identified. A pair of P3/Sabin-P2/Lansing viral recombinants that differ only at position 472 was used; the viruses replicated equally well in HeLa cells, but the virus with a U at base 472 was attenuated in mice. In the human neuroblastoma cell line SH-SY5Y, recombinants with a U at base 472 replicated to approximately 10-fold-lower titers than did neurovirulent viruses with a C at this position. Analysis of viral RNA and protein synthesis indicated that translation of the attenuated viral RNA was specifically reduced in SH-SY5Y cells.  相似文献   

4.
CD44 is not required for poliovirus replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
The identification of a monoclonal antibody, AF3, which recognizes a single isoform of the cell surface protein CD44 and preferentially blocks binding of serotype 2 poliovirus to HeLa cells, suggested that CD44 might be an accessory molecule to Pvr, the cell receptor for poliovirus, and that it could play a role in the function of the poliovirus receptor site. We show here that only AF3 blocks binding of serotype 2 poliovirus to HeLa cells and, in contrast to a previously published report, that the anti-CD44 monoclonal antibodies A3D8 and IM7 are unable to block binding of poliovirus. To determine whether CD44 is involved in poliovirus infection, we analyzed the replication of all three serotypes of poliovirus in human neuroblastoma cells which lack or express CD44 and in mouse neuroblastoma cells which lack Pgp-1, the mouse homolog of human CD44, and which express Pvr. All three poliovirus serotypes replicate with normal kinetics and to normal levels in the absence or presence of CD44 or in the absence of Pgp-1. Furthermore, the binding affinity constants of all three poliovirus serotypes for Pvr are unaffected by the presence or absence of CD44 in the human neuroblastoma cell line. We conclude that CD44 and Pgp-1 are not required for poliovirus replication and are unlikely to be involved in poliovirus pathogenesis.  相似文献   

5.
We previously reported the isolation of a mutant poliovirus lacking the entire genomic RNA 3' noncoding region. Infection of HeLa cell monolayers with this deletion mutant revealed only a minor defect in the levels of viral RNA replication. To further analyze the consequences of the genomic 3' noncoding region deletion, we examined viral RNA replication in a neuroblastoma cell line, SK-N-SH cells. The minor genomic RNA replication defect in HeLa cells was significantly exacerbated in the SK-N-SH cells, resulting in a decreased capacity for mutant virus growth. Analysis of the nature of the RNA replication deficiency revealed that deleting the poliovirus genomic 3' noncoding region resulted in a positive-strand RNA synthesis defect. The RNA replication deficiency in SK-N-SH cells was not due to a major defect in viral translation or viral protein processing. Neurovirulence of the mutant virus was determined in a transgenic mouse line expressing the human poliovirus receptor. Greater than 1,000 times more mutant virus was required to paralyze 50% of inoculated mice, compared to that with wild-type virus. These data suggest that, together with a cellular factor(s) that is limiting in neuronal cells, the poliovirus 3' noncoding region is involved in positive-strand synthesis during genome replication.  相似文献   

6.
The ability of poliovirus to propagate in neuronal cells can be reduced by introducing appropriate nucleotide substitutions into the viral genome. Specific mutations scattered throughout the poliovirus genome yielded the live attenuated vaccine strains of poliovirus. Neuron-specific propagation deficits of the Sabin strains are partially encrypted within a confined region of the internal ribosomal entry site (IRES), which carries attenuating point mutations in all three serotypes. Recently, high levels of neurovirulence attenuation were achieved with genetically engineered polioviruses containing heterologous IRES elements. This is exemplified with poliovirus recombinants replicating under control of a human rhinovirus type 2 (HRV2) IRES element. We have carried out experiments delineating the genetic basis for neuronal IRES function. Neuronal dysfunction of the HRV2 IRES is determined mainly by IRES stem-loop domain V, the locus for attenuating point mutations within the Sabin strains. Neuronal incompetence associated with HRV2 IRES domain V is substantially more pronounced than that observed with the attenuating IRES point mutation of the Sabin serotype 1 vaccine strain. Mix-and-match recombination of polio and HRV2 IRES domain V suggests that the attenuation phenotype correlates with overall structural features rather than primary sequence. Our experiments have identified HEK 293 cells as a novel system for the study of neuron-specific replication phenotypes of poliovirus. This cell line, originally derived from embryonic human kidney, has recently been described to display neuronal characteristics. We report propagation properties in HEK 293 cells for poliovirus recombinants with attenuated neurovirulence in experimental animals that corroborate this observation.  相似文献   

7.
The nucleotide at position 480 in the 5' noncoding region of the viral RNA genome plays an important role in directing the attenuation phenotype of the Sabin vaccine strain of poliovirus type 1. In vitro translation studies have shown that the attenuated viral genomes of the Sabin strains direct levels of viral protein synthesis lower than those of their neurovirulent counterparts. We previously described the isolation of pseudorevertant polioviruses derived from transfections of HeLa cells with genome-length RNA harboring an eight-nucleotide lesion in a stem-loop structure (stem-loop V) that contains the attenuation determinant at position 480 (A. A. Haller and B. L. Semler, J. Virol. 66:5075-5086, 1992). This stem-loop structure is a major component of the poliovirus internal ribosome entry site required for initiation of viral protein synthesis. The eight-nucleotide lesion (X472) was lethal for virus growth and gave rise only to viruses which had partially reverted nucleotides within the original substituted sequences. In this study, we analyzed two of the poliovirus revertants (X472RI and X472R2) for cell-type-specific growth properties. The X472RI and X472R2 RNA templates directed protein synthesis to wild-type levels in in vitro translation reaction mixtures supplemented with crude cytoplasmic HeLa cell extracts. In contrast, the same X472 revertant RNAs displayed a decreased translation initiation efficiency when translated in a cell-free system supplemented with extracts from neuronal cells. This translation initiation defect of the X472R templates correlated with reduced yields of infectious virus particles in neuronal cells compared with those obtained from HeLa cells infected with the X472 poliovirus revertants. Our results underscore the important of RNA secondary structures within the poliovirus internal ribosome entry site in directing translation initiation and suggest that such structures interact with neuronal cell factors in a specific manner.  相似文献   

8.
Johnson, Terry C. (University of Minnesota, Minneapolis), and Leroy C. McLaren. Plaque development and induction of interferon synthesis by RMC poliovirus. J. Bacteriol. 90:565-570. 1965.-Plaque development by RMC poliovirus on human amnion cell monolayers was investigated with regard to autointerference and to the effect of acid-agar overlay on plaquing efficiency. The virus was inhibited by acid-agar overlay, thereby exhibiting the d(-) marker typical of attenuated poliovirus strains. In addition, a lack of RMC poliovirus plaque development on HeLa cell monolayers was shown to be the result of an agar inhibitor which could be removed by NaCl extraction. By use of a simplified plaque reduction assay, it was shown that interferon production was responsible for the autointerference phenomenon. Interferon synthesis did not correlate with the ages in vitro of human amnion cell cultures. Fibroblasts originating from the chorionic membrane produced negligible amounts of the inhibitor. Interferon synthesis by human amnion cells infected with RMC poliovirus was inhibited by actinomycin D. The addition of guanidine hydrochloride to infected cultures immediately after RMC poliovirus adsorption markedly inhibited interferon synthesis, although after 2 hr (postadsorption) guanidine had no effect on interferon production.  相似文献   

9.
The excretion of live, attenuated poliovirus vaccine strains was determined in the feces of Prague Infants home children given 10(5) PFU of type 1 and 2 and 2.10(5) PFU of type 3 vaccine in a routine annual mass campaign. The first two faeces specimens examined in each vaccinee prior to immunization were negative for the virus. A total of 476 stool specimens were collected from 37 children at weekly intervals for a period of 18 weeks. The presence of type 1 poliovirus in the faeces of children given monovalent type 1 vaccine was detectable for 9 weeks, with a maximum in first week, and the virus was isolated in 74.2% of vaccinees. The timing of bivalent type 2 and type 3 vaccine was 9 weeks after monovalent type 1 immunization. The excretion of these two types of poliovirus was found to persist for at least 6 weeks. Type 2 poliovirus was isolated in all vaccinees, type 3 in 70.4% of children. The highest percentage of children excreting type 2 poliovirus was recorded in the first week, the excretion of type 3 peaked three weeks after bivaccine administration. The excretion peaks were reached relatively early postvaccination, with type poliovirus reaching the highest titre per 1 g of faeces. After revaccination (one year later) with monovalent type 1 vaccine, the vaccine strain of type 1 poliovirus could be detected for 6 weeks and was present in the highest percentage of positive stool samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Attenuated strains of the Sabin oral poliovirus vaccine replicate in the human gut and in rare cases cause vaccine-associated paralytic poliomyelitis (VAPP). Reversion of vaccine strains toward a pathogenic phenotype is probably one of the main causes of VAPP, a disease most frequently associated with type 3 and type 2 strains and more rarely with the type 1 (Sabin 1) strain. To identify the determinants and mechanisms of safety versus pathogenicity of the Sabin 1 strain, we characterized the genetic and phenotypic changes in six Sabin 1-derived viruses isolated from immunocompetent patients with VAPP. The genomes of these strains carried either few or numerous mutations from the original Sabin 1 genome. As assessed in transgenic mice carrying the human poliovirus receptor (PVR-Tg mice), all but one strain had lost the attenuated phenotype. Four strains presented only a moderate neurovirulent phenotype, probably due at least in part to reversions to the wild-type genotype, which were detected in the 5' noncoding region of the genome. The reversions found in most strains at nucleotide position 480, are known to be associated with an increase in neurovirulence. The construction and characterization of Sabin 1 mutants implicated a reversion at position 189, found in one strain, in the phenotypic change. The presence of 71 mutations in one neurovirulent strain suggests that a vaccine-derived strain can survive for a long time in humans. Surprisingly, none of the strains analyzed were as neurovirulent to PVR-Tg mice as was the wild-type parent of Sabin 1 (Mahoney) or a previously identified neurovirulent Sabin 1 mutant selected at a high temperature in cultured cells. Thus, in the human gut, the Sabin 1 strain does not necessarily evolve toward the genetic characteristics and high neuropathogenicity of its wild-type parent.  相似文献   

11.
12.
The complete genome sequence of transmissible Gastroenteritis virus (TGEV) strain TS, previously isolated from Gansu province, was cloned and compared with published sequence data from other TGEV strains.Phylogenetic tree analysis based on the amino acid and nucleotide sequences of the S gene showed that the TGEV strains were divided into 3 clusters. TGEV TS showed a close evolutionary relationship to the American Miller cluster but had a 5' non-translated region (NTR) sequence closely related to the American Purdue cluster.Continued culture in different cell types indicated that TGEV TS virulence could be attenuated alter fifty passages in Porcine kidney (PK-15) cells, and that the Porcine kidney cell line IB-RS-2 (IBRS) was not suitable for culture of the TGEV strain TS.  相似文献   

13.
Comparative biochemical studies of type 3 poliovirus   总被引:8,自引:5,他引:3       下载免费PDF全文
A study of the biochemistry of type 3 poliovirus strains which involves the examination of the virus-coded polypeptides in infected cells and the preparation of oligonucleotide maps is reported. The polypeptide patterns were shown to be a relatively stable property of virus strains and distinguished Sabin vaccine strains from wild strains of poliovirus type 3. This approach may be of value in deciding the origin (vaccine or nonvaccine) of field isolates of poliovirus. Oligonucleotide maps were found to be sensitive indicators of differences among strains and appear to form a basis for determining genetic relationships among strains. The nucleotide maps of two viruses isolated from human cases of paralytic poliomyelitis temporally associated with the administration of attenuated vaccine suggested a vaccine origin for the strain. In one case the nucleotide map was indistinguishable from that of the vaccine strain.  相似文献   

14.
In a previous study of poliovirus vaccine-derived strains isolated from patients with vaccine-associated paralytic poliomyelitis (VAPP) (9, 11), we reported that a high proportion (over 50%) of viruses had a recombinant genome. Most were intertypic vaccine/vaccine recombinants. However, some had restriction fragment length polymorphism (RFLP) profiles different from those of poliovirus vaccine strains. We demonstrate here that five such recombinants, of 88 VAPP strains examined, carried sequences of wild (nonvaccine) origin. To identify the parental wild donor of these sequences, we used RFLP profiles and nucleotide sequencing to look for similarity in the 3D polymerase-coding region of 61 wild, cocirculating poliovirus isolates (43 type 1, 16 type 2, and 2 type 3 isolates). In only one case was the donor identified, and it was a wild type 1 poliovirus. For the other four vaccine/wild recombinants, the wild parent could not be identified. The possibility that the wild sequences were of a non-poliovirus-enterovirus origin could not be excluded. Another vaccine/wild recombinant, isolated in Belarus from a VAPP case, indicated that the poliovirus vaccine/wild recombination is not an isolated phenomenon. We also found wild polioviruses (2 of 15) carrying vaccine-derived sequences in the 3' moiety of their genome. All these results suggest that genetic exchanges with wild poliovirus and perhaps with nonpoliovirus enteroviruses, are also a natural means of evolution for poliovirus vaccine strains.  相似文献   

15.
Background To understand immunological responses in chimpanzees vaccinated with live‐attenuated vaccine (oral polio vaccine; OPV), serum neutralizing antibodies against poliovirus types 1, 2, and 3 were investigated over time. Methods The neutralizing antibody titers against poliovirus types 1, 2, and 3 were determined by microneutralization test using 100 ID50 of poliovirus types 1, 2, and 3 (Sabin strains). Results Neutralizing antibodies against poliovirus types 1, 2, and 3 were detected in 85.7%, 71.4%, and 65% of the serum from 42 chimpanzees tested 9 years post‐vaccination. The neutralizing antibody titers in chimpanzees were similar to the documented levels in human studies as an indicator of vaccine efficacy. Conclusions This study reveals persistence of neutralizing antibodies in chimpanzees for at least 9 years after vaccination with OPV. This first study in chimpanzees provides useful information for the evaluation of the success of vaccination with OPV in other captive apes.  相似文献   

16.
Characterization of poliovirus strains by an enzyme immunoassay (EIA). An enzyme immunoassay performed with polyclonal antisera to poliovirus types 1, 2 and 3 absorbed with heterologous strains of the same types was used for the characterization of poliovirus field isolates. The assay allowed the identification of 74 (93.6%) out of 79 isolates as wild or vaccine-like strains. Applications of EIA for the study of polioviruses are discussed.  相似文献   

17.
本文根据脊髓灰质炎病毒3个型别参考毒株的基因组核苷酸序列和蛋白质氨基酸序列资料,首次试用Kimura的分子进化理论和计算方法,推算出脊髓灰质炎病毒型间的进化距离、分歧进化时间及病毒蛋白质氨基酸的替换率。结果表明:(1)型间毒株相互进化距离大致相等;(2)三个型病毒是由一个共同祖先病毒在距今约1—2千年以前几乎同时分歧进化而来;(3)型间毒株蛋白质氨基酸替换率也大致相等。  相似文献   

18.
Poliovirus receptor (PVR) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily. Although MPH was initially reported as the mouse homolog of human PVR, recent data strongly suggest that MPH is the mouse homolog of human PRR2, a PVR-related gene 2 product, and not that of human PVR. Thus MPH is renamed mPRR2 in this study. Physiological functions of the PVR-related gene products have not been elucidated, although PVR has been well characterized as the poliovirus receptor. In this study, a possible function of mPRR2 (MPH), which is not a functional receptor for poliovirus, was investigated. Mouse L cells expressing mPRR2 were prepared. Those mouse cells showed a higher activity of cell aggregation than the parental mouse L cells. Enhancement of cell aggregation was also observed for insect Sf9 cells infected with recombinant baculovirus carrying mPRR2 cDNA. On the other hand, L cells expressing human PVR or monkey PVR (AGMα1 or AGMα2) did not show increased cell aggregation. The cell aggregation activity of L cells expressing mPRR2 was inhibited by the addition of anti-mPRR2 monoclonal antibodies or a soluble mPRR2 molecule produced by the baculovirus expression system. An immunofluorescence study revealed that mPRR2 protein was localized to the cell–cell contact sites between cells expressing mPRR2. A similar localization of mPRR2 was observed for intrinsic mPRR2 molecules of the mouse neuroblastoma cell line NS20Y. The contact site-specific localization of mPRR2 was not observed on the border between mPRR2-expressing and nonexpressing HeLa cells. Furthermore, mPRR2 proteins directly bound to each otherin vitro.mPRR2 was detected on various types of cultured cells of mouse origin and in various mouse tissues. These results suggest that mPRR2 is an intercellular adhesion molecule with a homophilic binding manner.  相似文献   

19.
Initiation of poliovirus RNA translation in reticulocyte lysates is mainly not precise, i.e. it occurs at the sites in the middle of the viral genome but not at the beginning of the polyprotein reading frame. The anomaly is due to the deficiency of translation initiation factors. Partial purification of the protein fraction stimulating the precise translation from the Krebs-2 cells is reported in the paper. This fraction, like the crude lysates factors, was considerably less active with the RNA of attenuated poliovirus strains of type 1 and 3 than with the RNA of virulent strains. The change in interaction of the specific segment of viral RNA with the translation initiation factors is suggested to contribute to the attenuated phenotype of the Sabin poliovirus strains.  相似文献   

20.
A survey of enteric viruses in domestic sewage   总被引:6,自引:0,他引:6  
In this second study (1979-1981) of the viral content of sewage we have demonstrated the presence of poliovirus types 1, 2, and 3 in Laval and Montreal. Several strains of poliovirus types 2 and 3 were nonvaccinal. This is in contrast with our first study (1977-1978) in which only type 1 poliovirus isolates were nonvaccinal. Coxsackievirus types B-3, B-4, and B-5 and echovirus types 1, 7, and 11 were also isolated from sewage. Interestingly, these isolations coincided with reports of isolation of the same strains during the same period by diagnostic laboratories. Our method based on Vero and BSC-1 cell cultures for virus isolation and immune electron microscopy for identification permitted the recovery not only of several strains of enteroviruses but also of some adenoviruses and reoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号