首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teopod 2 (Tp2) is a semidominant mutation of maize that prolongs the expression of juvenile vegetative traits, increases the total number of leaves produced by the shoot, and transforms reproductive structures into vegetative ones. Here, we show that Tp2 prolongs the duration of vegetative growth without prolonging the overall duration of shoot growth. Mutant shoots produce leaves at the same rate as wild-type plants and continue to produce leaves after wild-type plants have initiated a tassel. Although Tp2/+ plants initiate a tassel later than their wild-type siblings, this mutant tassel ceases differentiation at the same time as, or shortly before, the primary meristem of a wild-type tassel completes its development. To investigate the relationship between the vegetative and reproductive development of the shoot, Tp2/+ and wild-type plants were exposed to floral inductive short day (SD) treatments at various stages of shoot growth. Tassel initiation in wild-type plants (which normally produced 18 to 19 leaves) was maximally sensitive to SD between plastochrons 15 and 16, whereas tassel branching was maximally sensitive to SD between plastochrons 15 and 18. Tassel initiation and tassel morphology in Tp2/+ plants (which normally produced 21 to 26 leaves) were both maximally sensitive to SD between plastochrons 15 and 18. Thus, the constitutive expression of a juvenile vegetative program in Tp2/+ plants does not significantly delay the reproductive maturation of the shoot.  相似文献   

2.
Recessive mutations of the early phase change (epc) gene in maize affect several aspects of plant development. These mutations were identified initially because of their striking effect on vegetative phase change. In certain genetic backgrounds, epc mutations reduce the duration of the juvenile vegetative phase of development and cause early flowering, but they have little or no effect on the number of adult leaves. Except for a transient delay in leaf production during germination, mutant plants initiate leaves at a normal rate both during and after embryogenesis. Thus, the early flowering phenotype of epc mutations is explained completely by their effect on the expression of the juvenile phase. The observation that epc mutations block the rejuvenation of leaf primordia in excised shoot apices supports the conclusion that epc is required for the expression of juvenile traits. This phenotype suggests that epc functions normally to promote the expression of the juvenile phase of shoot development and to suppress the expression of the adult phase and that floral induction is initiated by the transition to the adult phase. epc mutations are epistatic to the gibberellin-deficient mutation dwarf1 and interact additively with the dominant gain-of-function mutations Teopod1, Teopod2, and Teopod3. Genetic backgrounds that enhance the mutant phenotype of epc demonstrate that, in addition to its role in phase change, epc is required for the maintenance of the shoot apical meristem, leaf initiation, and root initiation.  相似文献   

3.
Postembryonic shoot development in maize (Zea mays L.) is divided into a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase that differ in the expression of many morphological traits. A reduction in the endogenous levels of bioactive gibberellins (GAs) conditioned by any one of the dwarf1, dwarf3, dwarf5, or another ear1 mutations in maize delays the transition from juvenile vegetative to adult vegetative development and from adult vegetative to reproductive development. Mutant plants cease producing juvenile traits (e.g. epicuticular wax) and begin producing adult traits (e.g. epidermal hairs) later than wild-type plants. They also cease producing leaves and begin producing reproductive structures later than wild-type plants. These mutations greatly enhance most aspects of the phenotype of Teopod1 and Teopod2, suggesting that GAs suppress part but not all of the Teopod phenotype. Application of GA3 to Teopod2 mutants and Teopod1, dwarf3 double mutants confirms this result. We conclude that GAs act in conjunction with several other factors to promote both vegetative and reproductive maturation but affect different developmental phases unequally. Furthermore, the GAs that regulate vegetative and reproductive maturation, like those responsible for stem elongation, are downstream of GA20 in the GA biosynthetic pathway.  相似文献   

4.
M. Dudley  R. S. Poethig 《Genetics》1993,133(2):389-399
Teopod1 and Teopod2 are dominant, unlinked mutations in maize that cause dramatic morphological abnormalities, including inappropriate expression of juvenile traits in adult vegetative phytomers and the transformation of reproductive structures into vegetative ones. These phenotypes are consistent with the constitutive expression of a juvenile phase of development throughout shoot growth. To investigate the basis of the Tp1 and Tp2 phenotypes we have analyzed their cell-autonomy in mosaic Teopod:wild-type plants. Mosaic plants were generated by three different mechanisms. Tp1 has previously been shown to be non-cell-autonomous; to verify and extend these results, large wild-type sectors were generated on Tp1 plants by the spontaneous loss of a B-A translocation chromosome containing the Tp1 gene. Analysis of Tp2 cell-autonomy was complicated by a lack of useful markers on chromosome 10L proximal to Tp2. To circumvent this problem two strategies were used. A reciprocal translocation was used to link Tp2 the the wild-type allele of lw2. Sectors were induced in plants of this type by irradiation of imbibed seeds. Also, a chromosome-breaking Ds element located proximal to Tp2 was used to generate somatic sectors that uncovered w2, an albino mutation distal to Tp2. Our results demonstrate conclusively that both Tp1 and Tp2 are non-cell-autonomous. The general use of these techniques for clonal analysis in plants and the potential role of a diffusible factor in regulating the juvenile phase of development in maize are discussed.  相似文献   

5.
卢阳  龙鸿 《植物学报》2015,50(3):331-336
拟南芥(Arabidopsis thaliana)的营养生长可以分为2个阶段: 幼龄期与成熟期。由幼龄期向成熟期的转变(VPC)与叶片的形态学特征、茎顶端分生组织(SAM)形状、远轴面表皮毛的出现以及SPL家族转录因子表达水平的变化相关。研究表明, 造成这种转变的信号来源于叶原基。该研究利用2种莲座叶数目改变了的突变体和对野生型切除叶片的方法, 分析了叶片数目对VPC的影响。结果表明, 莲座叶数目的减少推迟了VPC的发生; 而莲座叶数目增多突变体amp1-1并未使VPC的发生提前, 推测叶源信号的产生受到了光合作用的影响。  相似文献   

6.
Apices of adult Hedera helix have a larger meristematic area, composed of smaller cells, than those of the juvenile shoots. In shoot tips of juvenile plants, cell divisions in the subapical area occur over a longer portion of the shoot, and cell division is continued for a longer period of time. These features are reminiscent of GA-induced changes in other plants. It is suggested that in experiments designed to shift Hedera from the juvenile to the adult form, consideration should be given to agents which affect both rates of cell division and distribution of dividing cells in the young shoot.  相似文献   

7.
Juvenile-to-adult phase change is an indispensable event which guarantees a successful life cycle. Phase change has been studied in maize, Arabidopsis and rice, but is mostly unknown in other species. Soybean/Fabaceae plants undergo drastic changes of shoot architecture at the early vegetative stage including phyllotactic change and leaf type alteration from simple to compound. These characteristics make soybean/Fabaceae plants an interesting taxon for investigating vegetative phase change. Following the expansion of two cotyledons, two simple leaves simultaneously emerge in opposite phyllotaxy. The phyllotaxy of the third and fourth leaves is not fixed; both opposite and distichous phyllotaxis are observed within the same population. Leaves were compound from the third leaf. But the third leaf was rarely simple. Morphological and quantitative changes in early vegetative phase were recognized in leaf size, leaf shape, number of trichomes, stipule size and shape, and shoot meristem shape. Two microRNA genes, miR156 and miR172, are known to be associated with vegetative phase change. Examination of the expression level revealed that miR156 expression was high in the first two leaves and subsequently down-regulated, and that of miR172 showed the inverse expression pattern. These expression patterns coincided with the case of other species. Taken all data together, the first and second leaves represent juvenile phase, the fifth and upper leaves adult phase, and the third and fourth leaves intermediate stage. Further investigation of soybean phase change would give fruitful understandings on plant development.  相似文献   

8.
Vegetative phase change is the developmental transition from the juvenile phase to the adult phase in which a plant becomes competent for sexual reproduction. The gain of ability to flower is often accompanied by changes in patterns of differentiation in newly forming vegetative organs. In maize, juvenile leaves differ from adult leaves in morphology, anatomy and cell wall composition. Whereas the normal sequence of juvenile followed by adult is repeated with every sexual generation, this sequence can be altered in maize by the isolation and culture of the shoot apex from an adult phase plant: an 'adult' meristem so treated reverts to forming juvenile vegetative organs. To begin to unravel the as-yet poorly understood molecular mechanisms underlying phase change in maize, we compared gene expression in two juvenile sample types, leaf 4 and culture-derived leaves 3 or 4, with an adult sample type (leaf 9) using cDNA microarrays. All samples were leaf primordia at plastochron 6. A gene was scored as 'phase induced' if it was up- or downregulated in both juvenile sample types, compared with the adult sample type, with at least a twofold change in gene expression at a P-value of < or =0.005. Some 221 expressed sequence tags (ESTs) were upregulated in juveniles, and 28 ESTs were upregulated in adults. The largest class of juvenile-induced genes was comprised of those involved in photosynthesis, suggesting that maize plants are primed for energy production early in vegetative growth by the developmental induction of photosynthetic genes.  相似文献   

9.
10.
11.
Structure-function relationships in highly modified shoots of cactaceae   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. SCOPE: Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus 'flower' is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels.  相似文献   

12.
Three clones of Coriandrum sativum L. shoots were obtained from three seedlings and micropropagated alternately on modified MS media containing kinetin only and kinetin plus indolyl-3-acetic acid (IAA). During the first 9 months of culture the shoots possessed the juvenile phenotype after which a sharp transition to mature phenotype occurred. In 15–17 months this was followed by shoot necrosis and decrease in number of shoots in the clones, leading to death of the clones.Conditions of in vitro culture tripled the length of the juvenile period. Mature phase of the shoots was stable in that no reversion to the juvenile phase was observed. Partial rejuvenation of mature shoots took place owing to formation of adventitious shoots in the callus formed at the shoot base. However maturation of such rejuvenated adventitious shoots took place much more rapidly in comparison with micropropagated juvenile shoots derived from seedlings. Reduction of the morphogenic potential of the mature shoots after 15–17 months of subculturing, an increase in number of abnormal shoots and shoot necrosis indicated physiological ageing of the clones.Data presented in the paper provide evidence of the clone ageing phenomenon during prolonged subculture in vitro.  相似文献   

13.
The leafy heads of cabbage (Brassica oleracea), Chinese cabbage (Brassica rapa ssp. pekinensis), Brussels sprouts (B. oleracea ssp. gemmifera) and lettuce (Lactuca sativa) comprise extremely incurved leaves that are edible vegetable products. The heading time is important for high quality and yield of these crops. Here, we report that BrpSPL9‐2 (B. rapa ssp. pekinensis SQUAMOSA PROMOTER BINDING‐LIKE 9‐2), a target gene of microRNA brp‐miR156, controls the heading time of Chinese cabbage. Quantitative measurements of leaf shapes, sizes, colour and curvature indicated that heading is a late adult phase of vegetative growth. During the vegetative period, miR156 levels gradually decreased from the seedling stage to the heading one, whereas BrpSPL9‐2 and BrpSPL15‐1 mRNAs increased progressively and reached the highest levels at the heading stage. Overexpression of a mutated miR156‐resistant form of BrpSPL9‐2 caused the significant earliness of heading, concurrent with shortening of the seedling and rosette stages. By contrast, overexpression of miR156 delayed the folding time, concomitant with prolongation of the seedling and rosette stages. Morphological analysis reveals that the significant earliness of heading in the transgenic plants overexpressing BrpSPL9‐2 gene was produced because the juvenile phase was absent and the early adult phase shortened, whereas the significant delay of folding in the transgenic plants overexpressing Brp‐MIR156a was due to prolongation of the juvenile and early adult phases. Thus, miR156 and BrpSPL9 genes are potentially important for genetic improvement of earliness of Chinese cabbage and other crops.  相似文献   

14.
The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus‐based vector (clbvINpr‐AtFT and clbvINpr‐CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4–6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr‐AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes.  相似文献   

15.
Marcgravia rectifolia L. is a dimorphic vine having distinct juvenile and adult shoots. The juvenile shoot is a climber characterized by an orthotropic growth habit, a flattened stem, adventitious roots, and ovate leaves. The adult shoot, on the other hand, possesses a plagiotropic growth habit, has a cylindrical stem, few or no adventitious roots, and lanceolate leaves. Both phases have distichous phyllotaxy, however the plastochron is shorter for the adult phase than for the juvenile. Internode elongation occurs earlier for adult shoots than for juvenile shoots. Cytological analyses show the flattened stem of the juvenile results from differential production of cells, especially in the pith region. On the other hand, internodes of the adult phase are longer than juvenile internodes, a result of more cells produced rather than longer cells. In juvenile stems a perivascular band of elongated fibers develops, while in adult stems this band consists of brachyosclereids. Both phases undergo secondary growth and have non-storied cambia. Cambial activity begins in the 6th internode of each phase. As secondary growth proceeds, the adult stem produces much more xylem than juvenile stems of the same age. Adventitious roots produced in the juvenile stem are located in vertical rows at the “corners” of flattened stems and are attachment structures aiding the climbing habit of this vine. Phase changes occur regularly in this species. The juvenile phase usually transforms into the adult, however the adult phase can spontaneously revert back into the juvenile phase. The anatomical features and the phase changes are discussed and compared to Hedera helix, a vine whose phase changes have been studied in some detail. It is suggested that the anatomical features of Marcgravia rectifolia L. including its phase changes, may provide an alternative system to study physiological changes similar to those done with Hedera helix.  相似文献   

16.
miRNA control of vegetative phase change in trees   总被引:3,自引:0,他引:3  
After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.  相似文献   

17.
18.
Plants of Metrosideros excelsa Sol. ex Gaertn. Scarlet Pimpernel, which had undergone reversal of ontogenetic ageing (rejuvenation) following micropropagation, were subjected to shoot and root restriction treatments over 35 weeks to accelerate vegetative phase change. Shoot restriction was imposed by removal of axillary branches, while control plants were allowed to branch. Root restriction, imposed by growing plants in a range of container sizes, was applied in factorial combination with shoot restriction. Image analysis techniques were used to measure changes in leaf dimensional (roundness, area, length, width, length/width ratio and perimeter) and optical (hue, saturation and lightness) properties which change gradually between juvenile and mature forms of Metrosideros excelsa. Leaves of single-stemmed plants became progressively mature with increasing node position, and developed the downy tomentum on the abaxial surface characteristic of mature leaves. In general, leaves on the branched plants did not become progressively mature with increasing node position. The acceleration in vegetative phase change in single-stemmed plants was not due to a greater number of nodes produced along the main axis, nor because of a greater distance from root to shoot apex. Root restriction reduced root growth in branched plants, and increased shoot/root dry weight ratio in both sets of plants. However, it did not affect shoot growth, nor did it accelerate vegetative phase change.  相似文献   

19.
Magnolia × soulangeana, one of the most famous ornamental trees of Magnoliaceae, is widely cultivated around the world. However, its phenological characteristics at life-cycle scale have never been detailedly reported so far. In this article, the extended BBCH (Biologische Bundesanstalt, Bundessortenamt, und Chemische Industrie) scale was applied to divide the growth and development cycle of M. × soulangeana in both juvenile phase and adult phase, and describe the characteristics of phenological development stage, so as to provide theoretical guidance for its cultivation measures implementation. Based on the BBCH phenological scale, the processes of germination (0), leaf development (1), main stem elongation (3) and dormancy (9) were observed in the juvenile phase. Likewise, the morphological changes of organs in adult phase were abundant, and eight principal growth stages were described: vegetative bud development (0), leaf development (1), shoot development (3), reproductive development (5), flowering (6), fruit development (7), maturity of fruit (8) and dormancy (9). Our newly developed scale provides a unified standard for describing and identifying the phenological period of M. × soulangeana. In addition, it is of great significance to understand the phenological characteristics of M. × soulangeana for its breeding and cultivation management.  相似文献   

20.
Teopod2 (Tp2) is a semi-dominant mutation of maize that prolongs the expression of characteristics normally confined to the juvenile phase of development. Two of the many dramatic morphological effects of this mutation are an increase in the number of vegetative nodes, and a reduction in the overall size of the shoot. To determine the cellular basis of these phenotypes, the technique of clonal analysis was used to compare the cell division patterns of wild-type and Tp2 plants. Our results indicate that Tp2 increases the number of vegetative nodes produced by the apicalmost cells in the meristem but does not affect the cell lineage of the basal, juvenile, part of the shoot. This result demonstrates that Tp2 does not act uniquely in a 'juvenile' domain of the meristem, but instead causes cells that are normally destined to produce adult structures to express juvenile traits inappropriately. Clonal analysis also demonstrates that Tp2 does not affect the size of the meristem prior to germination, nor does it affect the cell lineage of the basic structural unit of the stem, the phytomer. Thus the effects of this mutation on the size of the shoot are the result of changes in cell fate late in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号