首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biological control activity of Pythium oligandrum against black scurf of potato caused by Rhizoctonia solani AG-3 was evaluated in field experiments after treatment of potato seed tubers with P. oligandrum. Seed tubers infected with black scurf sclerotia were dipped for a few seconds in a suspension of 103, 104 or 105 mL?1 P. oligandrum oospores and were then air-dried. Each level of P. oligandrum-treatment significantly reduced the disease rates of stolon at a level similar to that achieved by chemical control. When P. oligandrum populations adherent to the surface of seed tubers were determined, oospore counts on tubers treated with 104 or 105 oospores mL?1 were about 540/cm2 or about 22,000/cm2 just after dipping and decreased to about 170/cm2 or 2900/cm2 after a 3-week incubation, respectively. Confocal laser scanning microscopic observation with an immuno-enzymatic staining procedure showed that P. oligandrum hyphae had colonized the sclerotia and established close contact by coiling around the R. solani hyphae present on the surface of seed tubers, in a manner similar to that observed in the dual-culture test. Quantification of R. solani DNA by PCR indicated that the R. solani population was reduced on the seed tubers treated with P. oligandrum compared to untreated tubers. Furthermore, the ability of P. oligandrum to induce resistance against black scurf was determined using a potato tuber disk assay. Treatment of tuber disks with the cell wall protein fraction of P. oligandrum enhanced the expression of defense-related genes such as 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, lipoxygenase and basic PR-6 genes, and reduced disease severity upon challenge with R. solani compared with untreated controls. These results suggest that biocontrol mechanisms employed by P. oligandrum against black scurf involve both mycoparasitism and induced resistance.  相似文献   

2.
3.
Water-soluble low-molecular-weight (3–10 kDa) chitosan obtained by enzymatic degradation of high-molecular-weight chitosan, as well as its deaminated derivatives, can be used as elicitors of resistance to late blight in potato.  相似文献   

4.
Water-soluble low-molecular-weight (3-10 kDa) chitosan obtained by enzymatic degradation of high-molecular-weight chitosan, as well as its deaminated derivatives, can be used as elicitors of late blight resistance in potato.  相似文献   

5.
The established microplants, mycorrhized and non-mycorrhized controls, were planted in the field and unsprayed (controls), sprayed with a conventional fungicide (Ridomil), with Ridomil alternating with N,O-carboxymethyl chitosan (NOCC — a soluble chitosan) or sprayed only with NOCC. The effects of the treatments on late blight progression in the crop were monitored throughout the season and yield measured. In a preliminary study on the inoculation of detached leaves from unsprayed plants and plants sprayed with Ridomil and NOCC, respectively, NOCC was shown to delay disease development. In the field, late blight development was most rapid in the unsprayed controls, delayed in the Ridomil-treated plants and disease progression was slowed in the other treatments (AMF-inoculation, AMF-NOCC sprayed, NOCC-sprayed and Ridomil-NOCC sprayed). It was shown that plant chitinase activity increased in the AMF, AMF-NOCC and NOCC treatments. At harvest, yields for the Ridomil-NOCC, NOCC and AMF-NOCC treatments were significantly higher than the un-sprayed, non-mycorrhizal control and were not significantly different to the Ridomil-sprayed control. The results are discussed in relation to the production of seed potatoes for organic (ecological) growers.  相似文献   

6.
谭艳  彭良志  袁玲  王少博 《微生物学报》2015,55(11):1418-1426
摘要:【目的】研制安全、无毒、高效的生物保鲜剂,降低意大利青霉(Penicillium italicum,青霉)和指状青霉(Penicillium digitatum,绿霉)引起的柑橘烂果。【方法】试验利用自主选育的寡雄腐霉优良菌株(Pythium oligandrum CQ2010),制备发酵液,测试了对小鼠的急性毒性,并设置对照(液体培养基,CK)、寡雄腐霉发酵液(P. oligandrum Broth,POB)、咪鲜胺(Prochloraz,PC)、咪鲜胺+ POB(PC+POB)等4种处理,研究了它们对青、绿霉菌的抑制作用及其对柑橘防腐保鲜的作用。【结果】用大剂量的POB灌胃给药对小鼠体重增长无显著影响,供试动物的外观和行为均无异常,心、肝、肾、肺、肠等组织器官也未见病理改变。POB显著抑制青、绿霉菌丝生长和孢子萌发,抑制率分别为70.24%-93.74%(菌丝生长)和44.91%-87.82%(24 h孢子萌发)。柑橘果实接种青霉后,烂果率CK>POB、PC>PC+POB,防治效果PC+POB>POB、PC。在模拟柑橘商品化贮藏保鲜试验中,青、绿霉发病率占总发病率的50%以上,CK、POB、PC和PC + POB的烂果率依次为26.40%、15.03%、16.61%和4.21%。此外,POB对果实品质无显著影响,但显著提高果皮中的超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,有益于提高柑橘果实的抗病性和贮藏性。【结论】在柑橘贮藏过程中,POB对果实青、绿霉病有显著的防治作用,并与咪鲜胺的防病效果有叠加作用。  相似文献   

7.
从一株假单胞菌中分离其质粒DNA,并将其转化到大肠杆菌DH5α中。通过晚疫病抑菌实验证明此菌对马铃薯晚疫病有很强的抑制作用,对该质粒进行纯化和限制性酶切位点分析,将此质粒重组到含有绿色发光蛋白基因的质粒载体中。获得的重组质粒在体外经PCR扩增证明抗晚疫病的重组质粒已克隆到含有绿色光蛋白基因的质粒载体中。  相似文献   

8.
Climate change may have limited effect on global risk of potato late blight   总被引:2,自引:0,他引:2  
Weather affects the severity of many plant diseases, and climate change is likely to alter the patterns of crop disease severity. Evaluating possible future patterns can help focus crop breeding and disease management research. We examined the global effect of climate change on potato late blight, the disease that caused the Irish potato famine and still is a common potato disease around the world. We used a metamodel and considered three global climate models for the A2 greenhouse gas emission scenario for three 20‐year time‐slices: 2000–2019, 2040–2059 and 2080–2099. In addition to global analyses, five regions were evaluated where potato is an important crop: the Andean Highlands, Indo‐Gangetic Plain and Himalayan Highlands, Southeast Asian Highlands, Ethiopian Highlands, and Lake Kivu Highlands in Sub‐Saharan Africa. We found that the average global risk of potato late blight increases initially, when compared with historic climate data, and then declines as planting dates shift to cooler seasons. Risk in the agro‐ecosystems analyzed, varied from a large increase in risk in the Lake Kivu Highlands in Rwanda to decreases in the Southeast Asian Highlands of Indonesia.  相似文献   

9.
Genetic transformation with resistance (R) genes is expected to enhance resistance durability against pathogens, especially for potato, a vegetatively propagated crop with tetrasomic inheritance and a long-term breeding program. In this study, 128 potato transformants were analysed for the presence of vector T-DNA genes, borders and backbone sequences. They were harvested after transformation using a construct containing neomycin phosphotransferase II (nptII) and three R genes against potato late blight (Phytophthora infestans). Our analysis revealed that 45 % of the R gene-containing transformants possessed a low T-DNA copy number, without the integration of vector backbone and borders. The integration of vector backbone sequences was characterized using eight genes, and backbone gene tetA was selected for the early prediction of plants with backbone sequence integration. Three transformants, two plants harbouring one T-DNA copy and one plant harbouring three T-DNA copies, were crossed with susceptible cv. Katahdin. Based on our results, we conclude that all four T-DNA genes were inherited as one cluster and segregated in a Mendelian fashion. The three T-DNA inserts from the transformant harbouring three T-DNA copies were statistically proven to be un-linked and inherited into the offspring plants independently. All of the R genes were functionally expressed in the offspring plants as in their parental transformants. This functional gene stacking has important implications towards achieving more durable resistance against potato late blight.  相似文献   

10.
Black dot and other fungal blemishing diseases were assessed on tubers from crops in eastern England in 1987 and 1988, and in 1989 and 1990 from crops throughout Great Britain. Black dot was found on tubers in crops from all areas of the country, and was most common in those from eastern and southern England. The disease was scarce on most Scottish crops, but occasionally some were severely affected. In 1988 there was no consistent relationship between the amounts of disease on the seed and subsequent ware crop. On average, the disease was more prevalent in irrigated crops and where the interval between successive potato crops was short. In 1990 treating seed tubers with fungicide had no effect on subsequent levels of disease. Few crops were unaffected by silver scurf, and it was most common in crops from southern and eastern England. In the national survey common scab was the most prevalent disease, black scurf was less common and skin spot and powdery scab uncommon except in some Scottish crops.  相似文献   

11.
Late blight caused by Phytophthora infestans is a major constraint to potato production. Inadequate control of the disease has often resulted in potato yield losses. We assessed the efficacy of fungicides, phosphoric acid and stinging nettle extract combinations for late blight control at two locations in Kenya. Disease severity, relative area under disease progress curves (RAUDPC), pathogen lesions and tuber yield were quantified during the 2008 and 2009 cropping cycles. The application of metalaxyl alternated with phosphate resulted in the greatest suppressive effects on late blight. The average late blight severity ranged from 3.5 to 34% in 2008 and 4.7 to 50% in 2009 at Tigoni location. RAUDPC for the same location ranged from 5 to 40% and 5 to 50% in 2008 and 2009, respectively. Similar levels of late blight severity were recorded at Marimba location in both years. Lesion growth and pathogen lesion numbers on potato plants differed significantly (p < 0.05) among treatments. Fungicides, phosphoric acid and stinging nettle extract varied in late blight control. Potato tuber yield varied among treatments. Phosphoric acid treatment had significantly (p < 0.05) greater tuber yield compared to metalaxyl at both locations. Field plots treated with plant extracts from stinging nettle resulted in the lowest tuber yield compared to other treatments with the exception of the untreated control. Fungicides, phosphoric acid, stinging nettle extract and their combinations can be readily effective in the suppression of late blight severity and pathogen lesions with moderate increases in tuber yield.  相似文献   

12.
Potato peels are waste by-product of the potato processing industry. They are reportedly rich in polyphenols. Our earlier studies have shown that extracts derived from potato peel (PPE) possess strong antioxidant activity in chemical and biological model systems in vitro, attributable to its polyphenolic content. The main objective of this study was to investigate the ability of PPE to protect erythrocytes against oxidative damage, in vitro. The protection rendered by PPE in erythrocytes was studied in terms of resistance to oxidative damage, morphological alterations as well as membrane structural alterations. The total polyphenolic content in PPE was found to be 3.93 mg/g powder. The major phenolic acids present in PPE were predominantly: gallic acid, caffeic acid, chlorogenic acid and protocatechuic acid. We chose the experimental prooxidant system: FeSO4 and ascorbic acid to induce lipid peroxidation in rat RBCs and human RBC membranes. PPE was found to inhibit lipid peroxidation with similar effectiveness in both the systems (about 80–85% inhibition by PPE at 2.5 mg/ml). While PPE per se did not cause any morphological alteration in the erythrocytes, under the experimental conditions, PPE significantly inhibited the H2O2-induced morphological alterations in rat RBCs as revealed by scanning electron microscopy. Further, PPE was found to offer significant protection to human erythrocyte membrane proteins from oxidative damage induced by ferrous–ascorbate. In conclusion, our results indicate that PPE is capable of protecting erythrocytes against oxidative damage probably by acting as a strong antioxidant.  相似文献   

13.
The method of polymerase chain reaction was used to amplify a fragment of the LZ-NBS-LRR receptor kinase gene R1; the gene was transferred into potato (Solanum tuberosum) from its wild-growing relative S. demissum and confers the race-specific recognition of the pathogen Phytophthora infestans. To verify this method as a test for the presence of the late blight resistance gene R1, the amplified genome fragment was cloned from the potato hybrid comprising the germplasm of S. demissum. The primary structure of this fragment, which corresponded to the receptor domain of kinase, did not practically differ from the matching sequence in S. demissum. In addition, the method was verified by scoring the set of plant differentials, wherein the presence of R1 was established with race-specific Phytophthora isolates. By screening 70 potato cultivars, we established a significant relationship between the presence of the gene R1 fragment and the phenotypic characters of late blight resistance and late maturity. This evidence supports the idea that R1 was introgressed from short-day S. demissum into potato plants together with some gene(s) conferring late transition to flowering.  相似文献   

14.
Pythium oligandrum Drechsler bearing spherical sporangia with complex subglobose elements was isolated for the first time in Egypt from agricultural field soil cultivated with alfalfa (Trifolium alexandrinum) in El-Minia, Egypt. This fungus was found to be an active bio-control agent against P. ultimum var. ultimum, the damping-off organism of wheat. In agar plates, P. oligandrum parasitized P. ultimum var. ultimum hyphae with the aid of thin haustorial branches or infection pegs, eventually leading to host destruction. Incorporation of P. oligandrum into carboxymethylcellulose seed coating successfully eliminated pre-emergence damping-off of wheat caused by P. ultimum var. ultimum, whereas Post-emergence damping-off was prevented by adding inocula of P. oligandrum to the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Potatoes of a number of varieties of contrasting levels of resistance were planted in pure or mixed stands in four experiments over 3 years. Three experiments compared the late blight severity and progress in mixtures with that in pure stands. Disease on susceptible or moderately resistant varieties typical of those in commercial use was similar in mixtures and pure stands. In 2 of 3 years, there were slight reductions on cv. Sante, which is moderately susceptible, in mixture with cv. Cara, which is moderately resistant. Cara was unaffected by this mixture. Mixtures of an immune or near‐immune partner with Cara or Sante substantially reduced disease on the latter. The effect of the size of plots of individual varieties or mixtures on blight severity was compared in two experiments. Larger plots had a greater area under the disease progress curve, but the average rate of disease progress was greater in smaller plots; this may be because most disease progress took place later, under more favourable conditions, in the smaller plots. In one experiment, two planting densities were used. Density had no effect on disease and did not interact with mixture effects. The overall conclusion is that, while mixtures of potato varieties may be desirable for other reasons, they do not offer any improvement on the average of the disease resistance of the components.  相似文献   

16.
The antifungal activity of chitosan against Fusarium spp. was investigated based on in vitro and in vivo assays, and its possible modes of action were also explored. Chitosan applied at 4.0 g/L of acetic acid-distilled water solution significantly decreased the mycelial growth of Fusarium oxysporum, Fusarium sambucinum and Fusarium graminearum by 88.4%, 89.0% and 89.8%, respectively. Tuber treatment by chitosan (4.0 g/L) of acetic acid-distilled water solution, prior to inoculation, reduced dry rot severity induced by F. oxysporum and F. sambucinum by 60.0% and 48.2%, respectively. When tested as plant treatment, potato plants inoculated with Fusarium species, exhibited 33.5%–45.3% less wilting severity as compared to the control. This abiotic treatment improved the phenolic compounds activities and defence-related enzymes such as peroxidase and polyphenoloxidase in potato tubers inoculated with Fusarium spp. Results clearly demonstrated that chitosan could be explored as an alternative agent to chemical fungicides for the control of tuber dry rot and Fusarium wilt through induction of the plant defence system.  相似文献   

17.
The antifungal properties and mechanism of three types of chitosan against the rice sheath blight pathogen, Rhizoctonia solani, were evaluated. Each chitosan had strong antifungal activity against R. solani and protected rice seedlings from sheath blight, in particular, two types of acid-soluble chitosan caused a 60–91?% inhibition in mycelial growth, 31–84?% inhibition of disease incidence, and 66–91?% inhibition in lesion length. The mechanism of chitosan in protection of rice from R. solani pathogen was attributed to direct destruction of the mycelium, evidenced by scanning and transmission electron microscopic observations and pathogenicity testing; indirect induced resistance was evidenced by the changes in the activities of the defense-related phenylalanine ammonia lyase, peroxidase and polyphenol oxidase in rice seedling. To our knowledge, this is the first report on the antifungal activity of chitosan against rice R. solani.  相似文献   

18.
Fungicide application is an effective management option to control late blight of potato (caused by Phytophthora infestans). Field experiments were conducted to evaluate the efficacy of recently introduced and previously used fungicides on late blight management and potato yields in the western plains of Nepal in 2015 and 2016 crop seasons. Fungicides and a non-treated control (NTC) were replicated three times in a randomized block design planted with late blight susceptible cultivar Cardinal. Chlorothalonil, copper oxychloride, dimethomorph, fenamidone + mancozeb, mancozeb and metalaxyl were sprayed in 2015. In 2016, carbendazim was used instead of chlorothalonil. The area under disease progress curve (AUDPC) was consistently reduced in years by dimethomorph (90% and 65% in 2015 and 2016, respectively), fenamidone + mancozeb (68% and 62%) and mancozeb (40% and 47%) compared with the NTC. Similarly, tuber yield was increased with the application of dimethomorph (266% and 146% in 2015 and 2016, respectively), fenamidone + mancozeb (211% and 155%) and mancozeb (136% and 116%) compared with the NTC. Chlorothalonil reduced AUDPC by 43% and increased tuber yield by 170% in 2015. Other fungicides either had inconsistent results or did not reduce late blight severity and consequent effects on potato yield. The overall benefit–cost ratio was highest for dimethomorph in both years. These results show efficacy of dimethomorph, fenamidone + mancozeb and mancozeb in reducing late blight severity and increasing potato tuber yield in the plains of Nepal.  相似文献   

19.
Fungal and oomycete populations and their dynamics were investigated following the introduction of the biocontrol agent Pythium oligandrum into the rhizosphere of tomato plants grown in soilless culture. Three strains of P. oligandrum were selected on the basis of their ability to form oospores (resting structures) and to produce tryptamine (an auxin-like compound) and oligandrin (a glycoprotein elicitor). Real-time PCR and plate counting demonstrated the persistence of large amounts of the antagonistic oomycete in the rhizosphere throughout the cropping season (April to September). Inter-simple-sequence-repeat analysis of the P. oligandrum strains collected from root samples at the end of the cropping season showed that among the three strains used for inoculation, the one producing the smallest amount of oospores was detected at 90%. Single-strand conformational polymorphism analysis revealed increases in the number of members and the complexity of the fungal community over time. There were no significant differences between the microbial ecosystems inoculated with P. oligandrum and those that were not treated, except for a reduction of Pythium dissotocum (ubiquitous tomato root minor pathogen) populations in inoculated systems during the last 3 months of culture. These findings raise interesting issues concerning the use of P. oligandrum strains producing elicitor and auxin molecules for plant protection and the development of biocontrol.In soilless cultures, the recycling of drainage water within a system is the consequence of new laws concerning water saving and limitation of pollution. Such closed systems minimize costs by conserving water and reducing fertilizer input; however, they may favor the dissemination of pathogens (13). When pathogens manage to enter recirculation systems, they are rapidly disseminated and may cause disease epidemics, particularly during periods of stress, e.g., stress due to high temperatures and/or to low levels of dissolved oxygen in the nutrient solution. Thus, numerous facultative pathogens commonly found in conventional cultures may become economically significant (53). Several of them, e.g., Pythium spp. and Phytophthora spp., are well adapted to the aquatic environment of hydroponic systems: they produce flagellate zoospores which enable them to swim in the nutrient solution, facilitating the spread of infection (18, 21, 36, 54, 61).Various methods are used to reduce the risks to plant health. Over recent years, the disinfection of nutrient solutions by physical or chemical treatments, e.g., ozonization, UV irradiation, chlorination, and thermo-disinfection, has been developed (13, 38). These methods effectively destroy pathogenic microorganisms but are harmful to species liable to benefit the plant, to be used as biocontrol agents, or both. Indeed, recirculation of nutrient solutions in closed hydroponic systems favors the establishment of a potentially suppressive microflora besides the pathogenic microflora (16, 28, 39, 41). The development of a beneficial microflora may thus be impeded by treatments used to destroy pathogenic microorganisms. Consequently, interest has been focused on the management of microorganisms in soilless cultures (12). Postma and coworkers (40) found that the extent of root disease is increased by the use of autoclaved rock wool. Tu and coworkers (59) observed that root rot disease was less severe in closed hydroponic systems than in open cultures and suggested that the difference was due to a higher density of bacteria in the closed systems. According to Paulitz (34), the diversity of microorganisms in soilless cultures is more limited than that in conventional soil cultures, such that conditions are more suitable for beneficial microorganisms, and consequently for effective biological control, in soilless than in conventional soil cultures.Biocontrol strategies are promising (7, 35). However, both biotic and abiotic factors may affect the performance of biocontrol methods. Relevant biotic factors include interactions with nontarget microorganisms (6), poor implantation of the biocontrol agent due to nonadaptation to the hydroponic system or resistance from the native microflora, shelf life and formulation, and host plant species and cultivar effects. Abiotic factors include climatic, chemical, and physical conditions of the soil or rhizosphere.Despite the limitations, various studies report evidence of the suppression of disease following the inoculation of hydroponic systems with antagonistic microorganisms. In particular, Pythium oligandrum is an effective biocontrol agent (2, 14, 49, 64). This oomycete colonizes roots without damaging the host plant cells (24, 45) and survives in the rhizosphere, where it exerts its biocontrol (57). P. oligandrum acts through both direct effects (mycoparasitism, antibiosis, and competition for nutrients and space) and indirect effects (stimulation of plant defense reactions and plant growth promotion) (49). The operating effects seem to depend on the type of pathogenic fungi being controlled (3, 48, 49). Le Floch and coworkers suggested that mycoparasitism is not the main mode of action (23). Root colonization by P. oligandrum may induce systemic resistance associated with the synthesis of elicitors protecting the plant from its aggressors (4, 17, 31, 37, 56). Several studies have investigated formulations of P. oligandrum oospores applied to soil or seeds, and their production and use, to optimize the efficacy of biocontrol (9, 30).Effective biocontrol by P. oligandrum may be limited by its heterogeneous implantation in the rhizosphere (46). Therefore, enhanced implantation and persistence of P. oligandrum in the rhizosphere should improve plant protection. We report an investigation of the persistence of P. oligandrum and its impact on the native fungal microflora of the roots. Three strains with characteristic traits were selected to constitute an inoculum applied to tomato plant roots. The characteristics of the strains were the production of oospores to allow root colonization and favor persistence, the synthesis of tryptamine, a plant growth enhancer (22), and the production of oligandrin, a plant-protective elicitor (37). The inoculated rhizospheres were monitored to evaluate the persistence of the strains and their effects on the microflora. The populations of the common tomato root pathogen P. dissotocum (endemic in the studied systems) and of P. oligandrum were both assessed by plate counting and real-time PCR. The strain(s) of P. oligandrum responsible for the colonization of the rhizosphere was identified by inter-simple-sequence-repeat (ISSR) methodology. Single-strand conformational polymorphism (SSCP) investigations were used to study the effects of P. oligandrum on the fungal populations colonizing the rhizosphere and the fungal dynamics throughout the cropping season.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号