首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of a two-year study concern the effectiveness of 4 substances--biopreparate Chitosol (beta-1,4 D-glucosamine polymer) and fungicides: Rovral Flo 255 SC (BAS iprodione 255 g/dm3), Sportak Alpha 380 EC (BAS prochloraz 0,300 dm3/dm3 and carbendazim 80 g/dm3) and Zaprawa Funaben T (carbendazim 20% + tiuram 45%)--used against root rot and plant rot was described. These experiments were conducted in glasshouse and field conditions. Root of parsley cultivar Berlińska were treated one of tested substances autumn before storage period in clamp or spring immediately before planting seedling roots. The results showed that autumn dressing was ineffective, indices of root infestation were similar in each combination including control in both years of observation. Spring dressing was better, but not only in controls were many parsley plants decaying in the fields. Among substances used for spring dressing of seedling roots, the best efficacy exhibited Zaprawa Funaben T and Sportak Alpha 380 EC.  相似文献   

2.
Ethylene treatment of carrot roots elicits a developmental program encompassing an increase in respiration rate and changes in gene expression. Both phenomena are potentiated when ethylene is administered in O2. Our previous studies showed that both respiration and a number of ethylene specific mRNAs increase together in response to ethylene through some 21 hours, whereas thereafter respiration continues to rise, while the level of induced mRNAs drops. Herein we ask whether an experimentally effected drop in the respiration rate within the first 21 hours caused by the withdrawal of ethylene, or substitution of air for O2 in the continued presence of ethylene, is linked to a drop in the level of ethylene-induced mRNA. Quantitative estimation of two ethylene evoked mRNAs by dot blot hybridization with appropriate cDNA clones has shown that under the specified treatment the induced mRNA levels remain constant while the respiration rate drops, suggesting that gene expression, as reflected in induced mRNA levels, and respiration rate are separately regulated facets of the ethylene response.  相似文献   

3.
《Biological Control》2008,47(3):552-559
Headspace volatile substances (VS) produced by Streptomyces platensis F-1 were preliminarily identified using GC–MS. The effects of VS released by S. platensis F-1 on the control of leaf blight/seedling blight of rice caused by Rhizoctonia solani, leaf blight of oilseed rape caused by Sclerotinia sclerotiorum and fruit rot of strawberry caused by Botrytis cinerea, as well as on the growth of these three pathogenic fungi, were investigated. Results showed that sixteen volatile compounds were tentatively identified in 1-week-old cultures of S. platensis F-1 grown on autoclaved wheat seeds. They could be chemically grouped into alcohols, esters, acids, alkanes, ketones and alkenes. The most abundant composition in volatiles of S. platensis F-1 is geosmin, an earthy-muddy–smelling compound. Two antifungal compounds, phenylethyl alcohol and (+)-epi-bicyclesesquiphellandrene, were detected in the volatile profile of S. platensis F-1. Consistent fumigation of healthy tissues of rice, oilseed rape and strawberry to VS of S. platensis effectively reduced the incidence and/or the severity of leaf blight/seedling blight of rice (R. solani), leaf blight of oilseed rape (S. sclerotiorum) and fruit rot of strawberry (B. cinerea). A significant (P < 0.05) suppression of the mycelial growth of R. solani, S. sclerotiorum and B. cinerea by the VS of S. platensis was observed. The potential of using VS of S. platensis F-1 as a biofumigant to control plant fungal diseases is discussed.  相似文献   

4.
Diseases caused by fungi are increasingly impacting the health of the human population and now account for a large fraction of infectious disease complications in individuals with impaired immunity or breached tissue defenses. Antifungal therapy is often of limited effectiveness in these patients, resulting into treatment failures, chronic infections and unacceptable rates of mortality, morbidity and their associated costs. Consequently there is a real medical need for new treatments and preventive measures to combat fungal diseases and, toward this goal, safe and efficacious vaccines would constitute major progress. After decades of complacency and neglect of this critically important field of research, remarkable progress has been made in recent years. A number of highly immunogenic and protective vaccine formulations in preclinical setting have been developed, and at least two have undergone Phase 1 clinical trials as preventive and/or therapeutic tools against candidiasis.  相似文献   

5.
N. J. Fokkema 《BioControl》1996,41(3-4):333-342
Research has demonstrated the agricultural potential of biological control. For airborne pathogens as well as for soilborne pathogens similar strategies based on different targets in the life cycle of the pathogen can be distinguished, viz. (1) microbial protection of the host against infection, (2) microbial reduction of pathogen sporulation and (3) microbial interference with pathogen survival. Some successes and failures with respect to these targets will be discussed and include (1) biocontrol of seedling diseases, root pathogens, and post-harvest diseases (2) biocontrol of powdery mildew and Botrytis cinerea (3) biocontrol of sclerotial pathogens. Despite of a lot of research on biological control of plant diseases, the number of products available is limited and their market size is marginal. The market for biological control products is not only determined by agricultural aspects such as the number of diseases controlled by one biocontrol product in different crops but also by economic aspects as cost-effective mass production, easy registration and the availability of competing means of control including fungicides. The future development of low-chemical input sustainable agriculture and organic farming will determine the eventual role of biological control in agriculture.  相似文献   

6.
In naturally infested soil containingPythium ultimum, P. acanthicum andPhytophthora megasperma, onlyP. ultimum was associated with root rot and damped-off seedlings. Damping-off was promoted by low soil temperatures and by flooding. Seedling stands were markedly reduced when seed was pre-incubated in soil at 12°C but not at 25°C or 35°C. Dusting carrot seed with metalaxyl significantly increased seedling stands in the field at rates from 1.5–6 g kg−1 seed and in both flooded and unflooded, naturally infested soil at 3.15 g kg−1. In greenhouse experiments using artifically infested soil,P. ultimum andP. paroecandrum caused damping-off of carrot seedlings andRhizoctonia solani reduced root and shoot weights.R. solani caused damping-off in nutrient-enriched soil.P. acanthicum andP. megasperma were not pathogenic to seedlings, although both fungi colonized roots. Soil populations of allPythium spp., particularlyP. ultimum, increased during growth of seedlings and population growth ofP. megasperma was promoted by periodic flooding. Infestation of soil withP. acanthicum did not reduce damping-off of carrot seedlings byP. ultimum orP. paroecandrum, but significantly increased root and shoot weights and decreased root colonization byR. solani P. acanthicum has potential as a biocontrol agent againstR. solani.  相似文献   

7.
Tissue-specific accumulation of carotenoids in carrot roots   总被引:7,自引:0,他引:7  
Baranska M  Baranski R  Schulz H  Nothnagel T 《Planta》2006,224(5):1028-1037
Raman spectroscopy can be used for sensitive detection of carotenoids in living tissue and Raman mapping provides further information about their spatial distribution in the measured plant sample. In this work, the relative content and distribution of the main carrot (Daucus carota L.) root carotenoids, α-, β-carotene, lutein and lycopene were assessed using near-infrared Fourier transform Raman spectroscopy. The pigments were measured simultaneously in situ in root sections without any preliminary sample preparation. The Raman spectra obtained from carrots of different origin and root colour had intensive bands of carotenoids that could be assigned to β-carotene (1,520 cm−1), lycopene (1,510 cm−1) and α-carotene/lutein (1,527 cm−1). The Raman mapping technique revealed detailed information regarding the relative content and distribution of these carotenoids. The level of β-carotene was heterogeneous across root sections of orange, yellow, red and purple roots, and in the secondary phloem increased gradually from periderm towards the core, but declined fast in cells close to the vascular cambium. α-carotene/lutein were deposited in younger cells with a higher rate than β-carotene while lycopene in red carrots accumulated throughout the whole secondary phloem at the same level. The results indicate developmental regulation of carotenoid genes in carrot root and that Raman spectroscopy can supply essential information on carotenogenesis useful for molecular investigations on gene expression and regulation.  相似文献   

8.
Our field experiments showed that the use of Czech biopreparations (Supresivit, Ibefungin and Polyversum) based on the following microorganisms: Trichoderma harzianum, Bacillus subtilts and Pythium oligandrum applied as the seed treatment, the spray on the plants and like the mixture with mineral fertilizers (NPK, ammonium sulphate) lead namely after the seed-treatment and after the application as the mixture with mineral fertilizers to the increasing of the yield about 3-5 % (spring barley, winter wheat). This increasing was given by depression of soil-borne phytopathogenic fungi of the genera: Fusarium, Drechslera (Helminthosporium), Pseudocercosporella (Tapesia), Gaeumannomyces, and partially Rhynchosporium. The number of the fungi on plant rests were also influenced. No effect was observed on smuts and rusts. The smuts needed the seed-treatment with Vitavax (carboxim, thiram, imazalil) which didn't influence the biological treatment with biopreparations. The doses of biopreparations were following: the mixture with mineral fertilizer - 0.1 g of biopreparation/ kg of mineral fertilizer, the seed treatment - 0.1 g of biopreparation/1 kg of the seed and in the spray 0.1 g of biopreparation/1 litre of distilled water. Biological biopreparations will be usefull probably also in the future because they don't create the harmfull residues. The impact of the biopreparations under different ways of soil tillage (conventional variant with ploughing, variants with different plant residues and variants without ploughing) was studied as well. The influence of different soil preparation on composition of the soil mycoflora and the influence on quantity of the pathogenic genera Fusarium, Drechslera and others was observed. Quantity of named genera was negatively influenced while yield and health status of the plants were influenced positively.  相似文献   

9.
Matthews  Benjamin F.  Widholm  Jack M. 《Planta》1978,141(3):315-321
Aspartokinase (EC 2.7.2.4), homoserine-dehydrogenase (EC 1.1.1.3) and dihydrodipicolinic-acid-synthase (EC 4.2.1.52) activities were examined in extracts from 1-year-old and 11-year-old cell suspension cultures and whole roots of garden carrot (Daucus carota L.). Aspartokinase activity from suspension cultures was inhibited 85% by 10 mM L-lysine and 15% by 10mM L-threonine. In contrast, aspartokinase activity from whole roots was inhibited 45% by 10 mM lysine and 55% by 10 mM threonine. This difference may be based upon alterations in the ratios of the two forms (lysine-and threonine-sensitive) of aspartokinase, since the activity is consistently inhibited 100% by lysine+threonine. Only one form each of homoserine dehydrogenase and of dihydrodipicolinic acid synthase was found in extracts from cell suspension cultures and whole roots. The regulatory properties of either enzyme were identical from the two sources. In both the direction of homoserine formation and aspartic--semialdehyde formation, homoserine dehydrogenase activities were inhibited by 10mM threonine and 10 mM L-cysteine in the presence of NADH or NADPH. KCl increased homoserine dehydrogenase activity to 185% of control values and increased the inhibitory effect of threonine. Dihydrodipicolinic acid synthase activities from both sources were inhibited over 80% by 0.5 mM lysine. Aspartokinase was less sensitive to inhibition by low concentrations of lysine and threonine than were dihydrodipicolinic acid synthase and homoserine dehydrogenase to inhibition by the respective inhibitors.  相似文献   

10.
Chlorogenic acid (1·24-3·36 mg/g) was identified as the main phenolic component in the peel of carrots by hplc analysis. The higher the concentration of chlorogenic acid in different cultivars the greater the susceptibility to carrot fly larval damage. Increases in concentration were found both after carrot fly damage and after carrots had overwintered in the field. The presence and location of chlorogenic acid was confirmed in sections of carrot tissues, mounted in 0·05 M ammonia solution by viewing them using a u.v.-epifluorescent microscope. The importance of phenolic compounds and their function in the production of insect cuticle is discussed in relation to the different concentrations of chlorogenic acid and resistance to carrot fly in carrots.  相似文献   

11.
Considerable amounts of the following substances were found in uninfected parsley (Petroselinum crispum) cotyledons: furanocoumarins, the putative phytoalexins of this and some related plant species, two enzymes of the furanocoumarin pathway (S-adenosyl-L-methionine: xanthotoxol and S-adenosyl-L-methionine: bergaptol O-methyltransferases), two hydrolytic enzymes (1,3--glucanase, EC 3.2.1.39, and chitinase, EC 3.2.1.14), and pathogenesis-related proteins. The furanocoumarins and the methyltransferase activities reached their highest levels at the onset of cotyledon senescence as the hydrolytic enzymes increased from low to relatively high activity values. The relative amounts of pathogenesis-related proteins 1 and 2, as well as the corresponding mRNAs, also increased markedly. Two enzymes of general phenylpropanoid metabolism, L-phenylalanine ammonia-lyase and 4-coumarate: CoA ligase, decreased in activity in a biphasic fashion during cotyledon development. At all developmental stages, the levels of these putative defense-related agents in total cotyledon extracts were too high to enable detection of, possibly, additional changes upon infection with zoospores of Phytophthora megasperma f. sp. glycinea, a fungal pathogen to which parsley shows a non-host, hypersensitive resistance response.Abbreviations BMT S-adenosyl-L-methionine: bergaptol O-methyltransferase (EC 2.1.1.-) - 4CL 4-coumarate: CoA ligase (EC 6.1.1.12) - CMT S-adenosyl-L-methionine: caffeate O-methyltransferase (EC 2.1.1.-) - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5) - PR pathogenesis-related - XMT S-adenosyl-L-methionine: xanthotoxin O-methyltransferase (EC 2.1.1.-)  相似文献   

12.
A study on the evaluation of some fungal diseases and yield of groundnut in groundnut-based cropping systems was conducted in 2002 and 2003 planting seasons. Analysis of variance indicated that intercropping was highly significant on leaf spot disease severity 0.76; 0.75, rust 2.75; 2.69, as well as percentage defoliation 78.42%; 78.10% in 2002 and 2003, respectively. Plant population was significant on leaf spot severity 4.52, 4.60 rust 2.76; 366 and defoliation 226.5; 441.1 fungal as well as yield, while interactions were not significant on the fungal diseases and yield. Sole groundnut recorded significantly high severity of the fungal diseases investigated but low yield, when groundnut was intercropped with maize and melon and recorded the lowest yield in 2002 and 2003 respectively. 250,000 plants/ha recorded the lowest severity of the diseases investigated, while 444,444 plants/ha recorded the highest. Sole groundnut also recorded the highest percentage defoliation 79.37%, 79.25% when groundnut was intercropped with maize recorded the lowest 77.06%; 77.60%. 250,000 plants/ha had the lowest defoliation when 444,444 plants/ha had the highest 80.75% 82.13% in 2002 and 2003, respectively. Sole groundnut recorded the lowest in the majority of yields when intercropped with maize and with melon recorded a high yield and yield components in 2002 and 2003, respectively. The microorganisms identified were Cercospora spp., Aspergillus linked and Blastomyces.  相似文献   

13.
The main form of pectate hydrolases in the cell wall of parsley roots showed a unique substrate preference of a plant exopolygalacturonase because it clearly preferred the substrates with degree of polymerization about 10. This form was separated from the others, purified and characterized. Enzyme exhibited sharp pH optimum corresponding to pH 4.7, molecular mass 53.5 kDa, and isoelectric point 5.3. It was stable at 50°C in 2-h assay and had optimum of temperature at 60°C (activation energy being 37.0 kJ/mol). The interaction with concanavalin A indicated the glycosylation of enzyme. Substrates were cleaved from the non-reducing end.  相似文献   

14.
15.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

16.
真菌病害严重威胁作物的产量和品质,给国家和人民造成巨大的经济损失。尤其是引起维管束病害的土传真菌,化学农药的作用效果很不理想。利用抗性基因进行遗传育种是目前生物防治的重要手段之一,但对于缺乏抗性资源的物种,面对强大的土壤真菌病害,研究者也时常束手无策。近年来,利用RNA干扰技术发展而来的宿主诱导的基因沉默(Host induced gene silencing,HIGS)策略,在抗病虫害领域逐渐崭露头角,但由于真菌侵染的复杂多样性及土壤传播的特性,HIGS在土壤真菌病害中的应用充满神秘和挑战。本研究室近期揭示了棉花黄萎病(一种严重的土壤真菌病害)的"罪魁祸首"——大丽轮枝菌的侵染结构和侵染过程;并首次证明了宿主植物内源小RNA能够跨界进入病原菌细胞中降解致病基因表达的抗病作用;在此基础上,本研究室利用HIGS在棉花上获得了对黄萎病抗性较高的品系,成功地开辟了抗土壤黄萎真菌病害的新天地,研究结果显示出基因沉默技术在这一领域强大的应用潜力和前景。  相似文献   

17.
18.
The aim of two year investigation was the valuation the effect of biopreparate Polyversum (B.A.S. Pythium oligandrum) and preparate Biochikol 020 PC (B.A.S. chitosan) used in control of potato against Phytophthora blight on the tuber infestation during storage by Helminthosporium solani and tuber infestation by sclerotia of Rhizoctonia solani. As the standard fungicide Vitavax 200 FS (B.A.S. karboxin and thiuram) was used. After harvesting 100 tubers from each plots was collected and put in storage. The analysis of tuber infestation by Rhizoctonia solani and Helminthosporium solani was made after harvesting (September) and later every 3 months during storage period (December, March). The percent of diseased tubers in tested sample and also infestation degree of bulbs using 5-degree scale was estimated. The received results of investigations ascertained, that all tested preparations during potato vegetation influenced on lower (in comparison with control) degree of bulbs infestation by sclerots of Rhizoctonia solani and the mean degree of infestation by Helminthosporium solani. Moreover the percent of diseased tubers infected by pathogens with tested preparations combination was significant lower than in control.  相似文献   

19.
20.
In the control of Sphaerotheca pannosa var. rosae on rose Tolylfluanide + tebuconazole (Folicur Multi 50 WG at concentration 0.1%) was used for spray 2 -times at 14-day-intervals or 4-times at 7-day-intervals. After 4 weeks of plants protection effectiveness of tested product was about 75%. In the control of Diplocarpon rosae, the product was applied when first disease symptoms appeared on rose shrubs. Application was repeated 5-times at 14-day-intervals or 9-times at 7-day-intervals. After 9 week-protection effectiveness of tested product was about 85% and depended on frequency of sprayings. In the control of Puccinia horiana on chrysanthemum, Tolylfluanide + tebuconazole was used as plant spray twice at 14-day-intervals or 4-times at 7-day-intervals. After 4 week-protection the product suppressed of new telia formation about 55%. Application of the product for willow rust (Melampsora epitea) control suppressed formation of new uredia about 86% and half of them were dried. In the control of pelargonium rust (Puccinia pelargonii-zonalis) the product was used as plant spray 4-times at 7-day-intervals. It suppressed formation of new uredia about 90% and 1/3 of them were dried. It was found that 1 or 7 days after rose spray, spores of D. rosae collected from leaf blades only in 6% germinated. Spores taken from nonspraying leaves germinated in 90%. In case of P. pelargonii-zonalis, after 1 or 7 days after spraying, spores collected from protected plants germinated at 3%, compared to 90% on untreated plants. Spores of B. cinerea, collected from protected plants germinated at about 10%, whereas on control leaves at 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号