首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Saha N  Shuman S  Schwer B 《Journal of virology》2003,77(13):7300-7307
Structural differences between poxvirus and human mRNA capping enzymes recommend cap formation as a target for antipoxviral drug discovery. Genetic and pharmacologic analysis of the poxvirus capping enzymes requires in vivo assays in which the readout depends on the capacity of the viral enzyme to catalyze cap synthesis. Here we have used the budding yeast Saccharomyces cerevisiae as a genetic model for the study of poxvirus cap guanine-N7 methyltransferase. The S. cerevisiae capping system consists of separate triphosphatase (Cet1), guanylyltransferase (Ceg1), and methyltransferase (Abd1) components. All three activities are essential for cell growth. We report that the methyltransferase domain of vaccinia virus capping enzyme (composed of catalytic vD1-C and stimulatory vD12 subunits) can function in lieu of yeast Abd1. Coexpression of both vaccinia virus subunits is required for complementation of the growth of abd1Delta cells. Previously described mutations of vD1-C and vD12 that eliminate or reduce methyltransferase activity in vitro either abolish abd1Delta complementation or elicit conditional growth defects. We have used the yeast complementation assay as the primary screen in a new round of alanine scanning of the catalytic subunit. We thereby identified several new amino acids that are critical for cap methylation activity in vivo. Studies of recombinant proteins show that the lethal vD1-C mutations do not preclude heterodimerization with vD12 but either eliminate or reduce cap methyltransferase activity in vitro.  相似文献   

2.
Cap (guanine-N7) methylation is an essential step in eukaryal mRNA synthesis and a potential target for antiviral, antifungal, and antiprotozoal drug discovery. Previous mutational and structural analyses of Encephalitozoon cuniculi Ecm1, a prototypal cellular cap methyltransferase, identified amino acids required for cap methylation in vivo, but also underscored the nonessentiality of many side chains that contact the cap and AdoMet substrates. Here we tested new mutations in residues that comprise the guanine-binding pocket, alone and in combination. The outcomes indicate that the shape of the guanine binding pocket is more crucial than particular base edge interactions, and they highlight the contributions of the aliphatic carbons of Phe-141 and Tyr-145 that engage in multiple van der Waals contacts with guanosine and S-adenosylmethionine (AdoMet), respectively. We purified 45 Ecm1 mutant proteins and assayed them for methylation of GpppA in vitro. Of the 21 mutations that resulted in unconditional lethality in vivo,14 reduced activity in vitro to < or = 2% of the wild-type level and 5 reduced methyltransferase activity to between 4 and 9% of wild-type Ecm1. The natural product antibiotic sinefungin is an AdoMet analog that inhibits Ecm1 with modest potency. The crystal structure of an Ecm1-sinefungin binary complex reveals sinefungin-specific polar contacts with main-chain and side-chain atoms that can explain the 3-fold higher affinity of Ecm1 for sinefungin versus AdoMet or S-adenosylhomocysteine (AdoHcy). In contrast, sinefungin is an extremely potent inhibitor of the yeast cap methyltransferase Abd1, to which sinefungin binds 900-fold more avidly than AdoHcy or AdoMet. We find that the sensitivity of Saccharomyces cerevisiae to growth inhibition by sinefungin is diminished when Abd1 is overexpressed. These results highlight cap methylation as a principal target of the antifungal activity of sinefungin.  相似文献   

3.
4.
5.
6.
The Encephalitozoon cuniculi mRNA cap (guanine N-7) methyltransferase Ecm1 has been characterized structurally but not biochemically. Here we show that purified Ecm1 is a monomeric protein that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to GTP. The reaction is cofactor-independent and optimal at pH 7.5. Ecm1 also methylates GpppA, GDP, and dGTP but not ATP, CTP, UTP, ITP, or m(7)GTP. The affinity of Ecm1 for the cap dinucleotide GpppA (K 0.1 mm) is higher than that for GTP (K(m) 1 mm) or GDP (K(m) 2.4 mm). Methylation of GTP by Ecm1 in the presence of 5 microm AdoMet is inhibited by the reaction product AdoHcy (IC(50) 4 microm) and by substrate analogs sinefungin (IC(50) 1.5 microm), aza-AdoMet (IC(50) 100 microm), and carbocyclic aza-AdoMet (IC(50) 35 microm). The crystal structure of an Ecm1.aza-AdoMet binary complex reveals that the inhibitor occupies the same site as AdoMet. Structure-function analysis of Ecm1 by alanine scanning and conservative substitutions identified functional groups necessary for methyltransferase activity in vivo. Amino acids Lys-54, Asp-70, Asp-78, and Asp-94, which comprise the AdoMet-binding site, and Phe-141, which contacts the cap guanosine, are essential for cap methyltransferase activity in vitro.  相似文献   

7.
8.
9.
The mRNA capping apparatus of the pathogenic fungus Candida albicans consists of three components: a 520- amino acid RNA triphosphatase (CaCet1p), a 449-amino acid RNA guanylyltransferase (Cgt1p), and a 474-amino acid RNA (guanine-N7-)-methyltransferase (Ccm1p). The fungal guanylyltransferase and methyltransferase are structurally similar to their mammalian counterparts, whereas the fungal triphosphatase is mechanistically and structurally unrelated to the triphosphatase of mammals. Hence, the triphosphatase is an attractive antifungal target. Here we identify a biologically active C-terminal domain of CaCet1p from residues 202 to 520. We find that CaCet1p function in vivo requires the segment from residues 202 to 256 immediately flanking the catalytic domain from 257 to 520. Genetic suppression data implicate the essential flanking segment in the binding of CaCet1p to the fungal guanylyltransferase. Deletion analysis of the Candida guanylyltransferase demarcates an N-terminal domain, Cgt1(1-387)p, that suffices for catalytic activity in vitro and for cell growth. An even smaller domain, Cgt1(1-367)p, suffices for binding to the guanylyltransferase docking site on yeast RNA triphosphatase. Deletion analysis of the cap methyltransferase identifies a C-terminal domain, Ccm1(137-474)p, as being sufficient for cap methyltransferase function in vivo and in vitro. Ccm1(137-474)p binds in vitro to synthetic peptides comprising the phosphorylated C-terminal domain of the largest subunit of RNA polymerase II. Binding is enhanced when the C-terminal domain is phosphorylated on both Ser-2 and Ser-5 of the YSPTSPS heptad repeat. We show that the entire three-component Saccharomyces cerevisiae capping apparatus can be replaced by C. albicans enzymes. Isogenic yeast cells expressing "all-Candida" versus "all-mammalian" capping components can be used to screen for cytotoxic agents that specifically target the fungal capping enzymes.  相似文献   

10.
RNA (guanine-7-)-methyltransferase is the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA. The Saccharomyces cerevisiae enzyme is a 436-amino-acid protein encoded by the essential ABD1 gene. In this study, deletion and point mutations in ABD1 were tested for the ability to support growth of an abd1 null strain. Elimination of 109 amino acids from the N terminus had no effect on cell viability, whereas a more extensive N-terminal deletion of 155 residues was lethal, as was a C-terminal deletion of 55 amino acids. Alanine substitution mutations were introduced at eight conserved residues within a 206-amino-acid region of similarity between ABD1 and the methyltransferase domain of the vaccinia virus capping enzyme. ABD1 alleles H253A (encoding a substitution of alanine for histidine at position 253), T282A, E287A, E361A, and Y362A were viable, whereas G174A, D178A, and Y254A were either lethal or severely defective for growth. Alanine-substituted and amino-truncated ABD1 proteins were expressed in bacteria, purified, and tested for cap methyltransferase activity in vitro. Mutations that were viable in yeast cells had either no effect or only a moderate effect on the specific methyltransferase activity of the mutated ABD1 protein, whereas mutations that were deleterious in vivo yielded proteins that were catalytically defective in vitro. These findings substantiate for the first time the long-held presumption that cap methylation is an essential function in eukaryotic cells.  相似文献   

11.
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit vD1-(540-844) and a stimulatory subunit vD12. The poxvirus enzyme can function in vivo in Saccharomyces cerevisiae in lieu of the essential cellular cap methyltransferase Abd1. Coexpression of both poxvirus subunits is required to complement the growth of abd1delta cells. We performed a genetic screen for mutations in the catalytic subunit that bypassed the requirement for the stimulatory subunit in vivo. We thereby identified missense changes in vicinal residues Tyr-752 (to Ser, Cys, or His) and Asn-753 (to Ile), which are located in the cap guanine-binding pocket. Biochemical experiments illuminated a mechanism of intersubunit allostery, whereby the vD12 subunit enhances the affinity of the catalytic subunit for AdoMet and the cap guanine methyl acceptor by 6- and 14-fold, respectively, and increases kcat by a factor of 4. The bypass mutations elicited gains of function in both vD12-independent and vD12-dependent catalysis of cap methylation in vitro when compared with wild-type vD1-(540-844). These results highlight the power of yeast as a surrogate model for the genetic analysis of interacting poxvirus proteins and demonstrate that the activity of an RNA processing enzyme can be augmented through selection and protein engineering.  相似文献   

12.
The m7GpppN cap structure of eukaryotic mRNA is formed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. In trypanosomatid protozoa, the m7GpppN is further modified by seven methylation steps within the first four transcribed nucleosides to form the cap 4 structure. The RNA triphosphatase and guanylyltransferase components have been characterized in Trypanosoma brucei. Here we describe the identification and characterization of a T. brucei (guanine N-7) methyltransferase (TbCmt1). Sequence alignment of the 324-amino acid TbCmt1 with the corresponding enzymes from human (Hcm1), fungal (Abd1), and microsporidian (Ecm1) revealed the presence of conserved residues known to be essential for methyltransferase activity. Purified recombinant TbCmt1 catalyzes the transfer of a methyl group from S-adenosylmethionine to the N-7 position of the cap guanine in GpppN-terminated RNA to form the m7GpppN cap. TbCmt1 also methylates GpppG and GpppA but not GTP or dGTP. Mutational analysis of individual residues of TbCmt1 that were predicted-on the basis of the crystal structure of Ecm1--to be located at or near the active site identified six conserved residues in the putative AdoMet- or cap-binding pocket that caused significant reductions in TbCmt1 methyltransferase activity. We also report the identification of a second T. brucei RNA (guanine N-7) cap methyltransferase (named TbCgm1). The 1050-amino acid TbCgm1 consists of a C-terminal (guanine N-7) methyltransferase domain, which is homologous with TbCmt1, and an N-terminal guanylyltransferase domain, which contains signature motifs found in the nucleotidyl transferase superfamily.  相似文献   

13.
RNA (guanine-7-)methyltransferase, the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA, was isolated from extracts of Saccharomyces cerevisiae. The yeast enzyme catalyzed methyl group transfer from S-adenosyl-L-methionine to the guanosine base of capped, unmethylated poly(A). Cap methylation was stimulated by low concentrations of salt and was inhibited by S-adenosyl-L-homocysteine, a presumptive product of the reaction, but not by S-adenosyl-D-homocysteine. The methyltransferase sedimented in a glycerol gradient as a single discrete component of 3.2S. A likely candidate for the gene encoding yeast cap methyltransferase was singled out on phylogenetic grounds. The ABD1 gene, located on yeast chromosome II, encodes a 436-amino-acid (50-kDa) polypeptide that displays regional similarity to the catalytic domain of the vaccinia virus cap methyltransferase. That the ABD1 gene product is indeed RNA (guanine-7-)methyltransferase was established by expressing the ABD1 protein in bacteria, purifying the protein to homogeneity, and characterizing the cap methyltransferase activity intrinsic to recombinant ABD1. The physical and biochemical properties of recombinant ABD1 methyltransferase were indistinguishable from those of the cap methyltransferase isolated and partially purified from whole-cell yeast extracts. Our finding that the ABD1 gene is required for yeast growth provides the first genetic evidence that a cap methyltransferase (and, by inference, the cap methyl group) plays an essential role in cellular function in vivo.  相似文献   

14.
We examined the enzymatic function of recombinant CYP2C19 in enantiomeric hexobarbital (HB) 3'-hydroxylation, and searched the roles of amino acid residues, such as Phe-100, Phe-114, Asp-293, Glu-300, and Phe-476 of CYP2C19 in the stereoselective HB 3'-hydroxylation, using a yeast cell expression system and site-directed mutagenesis method. CYP2C19 wild-type exerted substrate enantioselectivity of (R)-HB>(S)-HB and metabolite diastereoselectivity of 3'(R)<3'(S) in 3'-hydroxylation of HB enantiomers. The substitution of Asp-293 by alanine failed to yield an observable peak at 450 nm in its reduced carbon monoxide-difference spectrum. CYP2C19-E300A and CYP2C19-E300V with alanine and valine, respectively, in place of Glu-300 exerted total HB 3'-hydroxylation activities of 45 and 108%, respectively, that of the wild-type. Interestingly, these two mutants showed substrate enantioselectivity of (R)-HB<(S)-HB, which is opposite to that of the wild-type, while metabolite diasteroselectivity remained unchanged. The replacement of Phe-476 by alanine increased total HB 3'-hydroxylation activity to approximately 3-fold that of the wild-type. Particularly, 3'(S)-OH-(S)-HB-forming activity elevated to 7-fold that of the wild-type, resulting in the reversal of the substrate enantioselectivity. In contrast, the substitution of phenylalanine at positions 100 and 114 by alanine did not produce a remarkable change in the total activity or the substrate enantioselectivity. These results indicate that Glu-300 and Phe-476 are important in stereoselective oxidation of HB enantiomers by CYP2C19.  相似文献   

15.
16.
17.
The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure-function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal mutants that displayed residual activity in vitro. We discuss our findings in light of a model of the Michaelis complex derived from crystal structures of AdoHcy-bound vaccinia cap methyltransferase and GTP-bound cellular cap methyltransferase. The structure-function data yield a coherent picture of the vaccinia cap methyltransferase active site and the determinants of substrate specificity and affinity.  相似文献   

18.
19.
Lima CD  Wang LK  Shuman S 《Cell》1999,99(5):533-543
RNA triphosphatase is an essential mRNA processing enzyme that catalyzes the first step in cap formation. The 2.05 A crystal structure of yeast RNA triphosphatase Cet1p reveals a novel active site fold whereby an eight-stranded beta barrel forms a topologically closed triphosphate tunnel. Interactions of a sulfate in the center of the tunnel with a divalent cation and basic amino acids projecting into the tunnel suggest a catalytic mechanism that is supported by mutational data. Discrete surface domains mediate Cet1p homodimerization and Cet1p binding to the guanylyltransferase component of the capping apparatus. The structure and mechanism of fungal RNA triphosphatases are completely different from those of mammalian mRNA capping enzymes. Hence, RNA triphosphatase presents an ideal target for structure-based antifungal drug discovery.  相似文献   

20.
Acquisition of the 5'cap is the earliest modification event during eukaryotic mRNA synthesis. The cap is thought to facilitate later processing steps, such as pre-mRNA splicing. If this is so, then a defect in cap synthesis should impact on splicing in vivo. We tested this hypothesis by examining the consequences of conditional inactivation of the Saccharomyces cerevisiae CEG1 gene, which encodes mRNA guanylyltransferase (capping enzyme). Two different ceg1-ts mutants, Y66A and C354Y, displayed a pre-mRNA processing (prp) defect, characterized by an increase in the amount of unspliced pre-mRNA after shift to nonpermissive temperature and a decrease in the amount of mature mRNA. The guanylyltransferase activities of the Y66A and C354Y proteins were thermolabile, suggesting that defective capping in vivo was contributory to the prp phenotype. Although these results provide the first genetic link between capping and splicing in vivo, we were unable to demonstrate a role for either the cap or the capping enzyme during yeast pre-mRNA splicing in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号