首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Canio G. Vosa 《Chromosoma》1970,31(4):446-451
Mitotic and salivary gland chromosomes of D. melanogaster show striking fluorescent patterns when stained with Quinacrine. In the salivary gland chromosomes there are up to five strongly fluorescing bands located on the fourth chromosome and at the proximal end of the X chromosome.—In mitotic cells the Y chromosome shows four fluorescent segments and other fluorescent regions are found proximally on the third pair and on the X chromosome. It is, therefore, possible to distinguish male and female interphase cells by their patterns of fluorescence.—A comparison between the position of heterochromatic, late replicating and fluorescing segments in the mitotic chromosomes, shows differences which demonstrate, for the first time, the chemical, morphological and genetical diversity of these three types of segments.  相似文献   

2.
Two central features of leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic “persistence time” between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an “orientation bias” characterizing the fraction of cells moving up the gradient. A coherent picture of cell-movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper we offer the possibility that “noise” in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we report on a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant receptor binding. This model proves to be capable of stimulating cell paths similar to those observed experimentally for two cell types examined to date: neutrophils and alveolar macrophages, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Further, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. The model also successfully predicts that an increase in persistence time is associated with a decrease in orientation for typical system parameter values, as is observed for alveolar macrophages in comparison to neutrophils. Thus, the concept of signal “noise” can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients. This suggests that chemosensory cell movement behavior may be based on a “usefully” imperfect integrated signal response system, which allows both random and directed searches under appropriate conditions.  相似文献   

3.
The surface area of chromosome territories has been suggested as a preferred site for genes, specific RNAs, and accumulations of splicing factors. Here, we investigated the localization of sites of replication within individual chromosome territories.In vivoreplication labeling with thymidine analogues IdUrd and CldUrd was combined with chromosome painting by fluorescentin situhybridization on three-dimensionally preserved human fibroblast nuclei. Spatial distributions of replication labels over the chromosome territory, as well as the territory volume and shape, were determined by 3D image analysis. During late S-phase a previously observed shape difference between the active and inactive X-chromosome in female cells was maintained, while the volumes of the two territories did not differ significantly. Domains containing early or mid to late replicating chromatin were distributed throughout territories of chromome 8 and the active X. In the inactive X-chromosome early replicating chromatin was observed preferentially near the territory surface. Most important, we established that the process of replication takes place in foci throughout the entire chromosome territory volume, in early as well as in late S-phase. This demonstrates that activity of macromolecular enzyme complexes takes place throughout chromosome territories and is not confined to the territory surface as suggested previously.  相似文献   

4.
Using an interspecies backcross, we have mapped the HOX-5 and surfeit (surf) gene clusters within the proximal portion of mouse chromosome 2. While the HOX-5 cluster of homeobox-containing genes has been localized to chromosome 2, bands C3-E1, by in situ hybridization, its more precise position relative to the genes and cloned markers of chromosome 2 was not known. Surfeit, a tight cluster of at least six highly conserved “housekeeping” genes, has not been previously mapped in mouse, but has been localized to human chromosome 9q, a region of the human genome with strong homology to proximal mouse chromosome 2. The data presented here place HOX-5 in the vicinity of the closely linked set of developmental mutations rachiterata, lethargic, and fidget and place surf close to the proto-oncogene Abl, near the centromere of chromosome 2.  相似文献   

5.
The genetically inactive, late-replicating human female X chromosome can be effectively distinguished from its more active, earlier-replicating homologue, when cells are grown according to the appropriate BrdU-33258 Hoechst protocol. Results obtained from a fluorescence analysis of DNA replication in X chromosomes are consistent with those from previous autoradiographic studies, but reflect additional sensitivity and resolution offered by the BrdU-Hoechst methodology. Both qualitative and quantitative differences in 33258 Hoechst fluorescence intensity, reflecting alterations in replication kinetics, can be detected between the two X chromosomes in female cells. The pattern of replication in the single X chromosome in male cells is indistinguishable from that of the early female X. Intercellular fluctuations in the distribution of regions replicating early or late in S phase, particularly with reference to the late female X, can be localized to structural bands, suggesting multifocal control of DNA synthesis in X chromosomes.  相似文献   

6.
Self-replication is an essential attribute of life but the molecular-level mechanisms involved are not well understood. Cellular self-replication requires not only duplicating all cellular components and doubling volume and membrane area, but also replicating cellular geometry. A whole-cell modeling framework is presented in which an assumed reaction network determines both concentration changes of cellular components and cell geometry. Cell shape is calculated by minimizing membrane-bending energy. Using this framework, simultaneous doubling of volume, surface area, and all components was found to be insufficient to provide mid-cell “pinching” of the parental cell to form two daughter cells. This prompted the design of a minimal protocell that includes a growing shell, a cell-cycle engine, and a contractile ring to enforce cytokinesis. Kinetic parameters were found such that the system exhibited periodic behavior with fundamental aspects of self-replication. This involved simultaneous doubling of all cellular components during a cell cycle, doubling cell volume and membrane area, achieving periodic changes in surface/volume ratio, and forming daughter cells that were geometrically equivalent to each other and to the “newborn” parental cell. The results presented here impact the design of laboratory protocells and the development of a modular strategy for constructing a comprehensive in silico whole-cell model.  相似文献   

7.
A late replicating X or Y chromosome can be detected by 33258 Hoechst staining and fluorescence microscopy in a large proportion of female or male mouse embryo cells, respectively, which have been cultured in medium containing 5-bromodeoxyuridine (BUdR) for part of one DNA synthesis period, The observed distribution of late replicating chromosome regions also includes centromeric heterochromatin and some quinacrine positive bands.  相似文献   

8.
The TI1/UPK1b gene codes for a protein of the “tetraspan” family and is expressed as a differentiation product of the mammalian urothelium. A partial genomic clone of the human homologue of the TI1/UPK1b gene was isolated and used as probe to localize the human gene to chromosome 3q13.3–q21 byin situhybridization. Using the same probe, aTaqI restriction fragment length polymorphism, with 29% heterozygosity, was identified by Southern analysis.  相似文献   

9.
Summary A technique is described for the production of detailed and richly contrasting G-band patterns in human prometaphase chromosomes with the aid of the triphenylmethane dye basic fuchsin. The usefulness of this method is illustrated by its application for the precise analysis of two chromosome 11 rearrangements. It is also demonstrated that high-resolution banding with basic fuchsin can reveal bands not present in the international standard idiogram of human prophase chromosomes (ISCN 1981). The technique described can also be used for easy recognition of the late replicating X chromosome, which stains darker than its early replicating homologue. A preliminary analysis of the late replicating X chromosomes in a 49,XXXXY individual suggests that the three supernumerary X chromosomes do not necessarily replicate synchronously.  相似文献   

10.
A V Rodionov 《Genetika》1999,35(2):277-290
Specific chromosome banding patterns in different eukaryotic taxons are reviewed. In all eukaryotes, chromosomes are composed of alternating bands, each differing from the adjacent material by the molecular composition and structural characteristics. In minute chromosomes of fungi and Protozoa, these bands are represented by kinetochores (Kt- (Cd-)bands), nucleolus organizers (N-bands), and telomeres as well as the euchromatin. In genomes of most fungi and protists, long clusters of tandem repeats and, consequently, C-bands were not revealed but they are likely to be found out in species with chromosomes visible under a light microscope, which are several tens of million bp in size. Chromosomes of Metazoa are usually larger. Even in Cnidaria, they contain C-bands, which are replicated late in the S phase. In Deuterostomia, chromosome euchromatin regions differ by replication time: bands replicating at the first half of the S phase alternate with bands replicating at the second half of the S phase. Longitudinal differentiation in the replication pattern of euchromatic regions is observed in all classes of Vertebrata beginning with the bony fish although the time when it developed in Deuterostomia is unknown. Apparently, the evolution of early and late replicating subdomains in Vertebrata euchromatin promoted fast accumulation of differences in the molecular composition of nucleoproteid complexes characteristic of early and late replicating bands. As a result, the more contrasting G/R and Q-banding patterns of chromosomes developed especially in Eutheria. The evolution of Protostomia and Plantae followed another path. An increase in chromosome size was not accompanied by the appearance of wide RBE and RBL euchromatin bands. The G/R-like banding within the interstitial chromosome regions observed in some representatives of Invertebrates and higher plants arose independently in different phylogenetic lineages. This banding pattern seems to be closer to that of C-banding than to the typical G/R-banding of the mammalian chromosomes.  相似文献   

11.
The addition of thymidine (TdR) to cells growing in a medium containing 5-bromodeoxyuridine (BUdR) at the end of the first replication cycle results in the incorporation of TdR into the late replicating DNA regions. These sites can be visualized by staining the metaphase chromosomes with the fluorescent dye "33258 Hoechst" or a "33258 Hoechst" Giemsa procedure. A sequence of late replication patterns has been established in metaphase chromosomes of cultured human peripheral lymphocytes. The patterns are in agreement with those obtained by the standard autoradiographic procedures, but are more accurate. As is known from autoradiography, late replicating bands are in the position of G or Q bands. The "33258 Hoechst" Giemsa staining procedure of chromosomes which have replicated in the presence of BUdR first and in TdR for the last 2 hrs of the S phase is preferable to the currently used Giemsa banding techniques: the method yields very well banded metaphases in all preparations examined, as the chromosome structure is not disrupted by the pretreatment. The bands are very distinct, even in the "difficult" chromosomes (e.g. No. 4, 5, 8 and X). In female cells the late replicating X chromosome can be identified by its size and staining pattern. In addition to the replication asynchrony, the sequence of replication within both X chromosomes in female cells is not absolutely identical. The phenomenon of a phase difference in replication between the homologues is not a peculiarity of the X chromosome, but can be found in all autosomes as well as in homologous positions on the chromatids of individual chromosomes.  相似文献   

12.
K. Hägele 《Chromosoma》1972,39(1):63-82
In salivary gland chromosome II ofChironomus, region A2j-A3(d) replicates during the whole replication cycle.3H-thymidine is incorporated in this region for a longer time than in bands of greater DNA values (Hägele, 1970). However, no extra DNA is accumulated in A2j-A3(d). Therefore it was supposed that in addition to the duplication of structural DNA an extra DNA is synthesized which immediately disappears from the chromosome. In this report the attempt was made to test this hypothesis. — Using3H-thymidine, the autoradiographic patterns have been studied which occur in the salivary gland chromosomes II ofChironomus thummi piger at the end of a replication step. The probable order of their sequence has been established. At the mid phase of a replication step region A2j-A3(d) and a certain number of definite bands are labelled whereas at the very end of DNA synthesis only A2j-A3(d) shows labelling. It is demonstrated that this region replicates for a longer time than regions containing up to 3.8 times more DNA. Moreover in most cells3H-thymidine is incorporated in region A2j-A3(d) at the end of synthesis at a higher rate than in late replicating bands. In this region there exists a considerable difference in relative grain density within the same phase of a replication step. This difference cannot be found in other bands studied. — These labelling patterns occur in chromosomes of both young larvae (8–9 days old) and prepupae (15–17 days old) if the larvae are prepared immediately after incubation in the isotope. — However, if young larvae are incubated in3H-thymidine and then develop to prepupae in water free of isotope region, A2j-A3(d) is unlabelled at the end of a replication step in half of the cells studied. In the other half this region shows labelling but the relative grain density is markedly reduced. The labelling pattern of other bands is not changed. Therefore loss of radioactive DNA in A2j-A3(d) is of real occurrence. — This loss probably takes place within the replication steps 1 or 2 between young larvae and praepupae. In these replications the structural DNA and the extra DNA, newly synthesized in A2j-A3(d), are unlabelled. The extra DNA disappears immediately from the chromosome. If, by chance, an exchange takes place between newly synthesized unlabelled DNA chains of extra DNA and old labelled DNA, then loss of radioactive DNA would be the result.  相似文献   

13.
The effects of L-azetidine 2-carboxylic acid on growth and proline metabolism in a proline-requiring auxotroph of Escherichia coli are described. The homologue inhibited growth of the wild type and it, alone, did not substitute effectively for proline as a growth supplement for the mutant. In medium containing 0.05 mM proline, the addition of increasing amounts of homologue progressively inhibited growth of the wild type but stimulated growth of the mutant at homologue: proline ratios of 10 : 1 and 50 : 1. This suggested that the homologue exerted a “sparing effect” on proline in the mutant.The incorporation of L-[U-14C]proline and L-[3H]azetidine 2-carboxylic acid into hot trichloroacetic acid-insoluble material in the mutant was measured. Amino acid analysis of the insoluble material from cells incubated with radiolabeled proline alone revealed that proline was partially degraded and metabolized to other amino acids prior to incorporation into protein. The addition of unlabeled homologue to the incubation medium significantly reduced proline catabolism, suggesting that the homologue exerted a sparing effect on proline in this mutant. In medium containing unlabeled proline and radiolabeled L-azetidine 2-carboxylic acid, the homologuewas incorporated both intact and partially degraded prior to incorporation into protein. Alanine was the major L-azetidine 2-carboxylic acid catabolite.  相似文献   

14.
Regional DNA replication kinetics in human X chromosomes have been analysed using BrdU-33258 Hoechst-Giemsa techniques in five cell types from human females: amniotic fluid cells, fetal and adult skin fibroblasts, and fetal and adult peripheral lymphocytes. In all cell types, the late-replicating X chromosome can be distinguished from its active, earlyreplicating homologue, and both the early and late X exhibit temporally and regionally characteristic internal sequences of DNA replication. The replication pattern of the early X in amniotic fluid cells and skin fibroblasts is similar to that of the early X in lymphocytes, although certain discrete regions are later-replicating in these monolayer tissue culture cells than are the corresponding regions in lymphocytes. However, DNA replication kinetics in late X chromosomes from amniotic fluid cells and skin fibroblasts are strikingly different from those observed in lymphocytes with respect both to the initiation and termination of DNA synthesis. The predominant late X pattern observed in 80–95% of lymphocytes, in which replication terminates in the long arm in bands Xq21 and Xq23, was never seen in amniotic fluid cells or skin fibroblasts. Instead, in these cell types, bands Xq25 and Xq27 are the last to complete DNA synthesis, while bands Xq21 and Xq23 are earlier-replicating; this pattern is similar to the alternative replication sequence observed in 5–20% of lymphocyte late X chromosomes. This replication sequence heterogeneity is consistent with the existence of tissue-specific influences on the control of DNA replication in human X chromosomes.  相似文献   

15.
In order to provide evidence as to whether sex chromatin (SC) of interphase cells is equivalent to the late replicating X chromosome in female mammalian cells, time-lapse cinephotometric and autoradiographic methods were used to give precise data for comparison of the DNA replication patterns of SC with that of each of the X chromosomes throughout the S period. Canine kidney epithelial cells were selected because they have distinct large metacentric X chromosomes and typical SC. Time-lapse cinephotometry was used to avoid possible alteration of DNA synthesis by chemical cell synchronization agents. Determination of the incidence of SC during the stages of the cell life cycle of proliferating cells of the same origin was performed in order hopefully to clarify conflicting reports on the subject. Our results clearly show that time and intensity of the SC replication throughout S period is like that of the late replicating X chromosome and unlike that of the early replicating X chromosome. The incidence of SC in proliferating cells in culture was found to vary with the stage of the cell life cycle, increasing with increasing postmitotic interval — least in G1, greater in S, and greatest in G2. The SC incidence increased strikingly from G1 to S and a less marked increase was observed between S and G2.  相似文献   

16.
Using BrdU/Hoechst 33258/Giemsa methods for detecting replicating chromosome bands, a method is described by which the DNA synthesis phase may be sub-divided on the basis of distinctive patterns displayed by certain chromosomes. — Applied to asynchronous populations successively sampled through one cell cycle, cells in S can be unscrambled and replaced in their correct time sequence. — This helps to overcome the sampling-time variable inherent in such populations, and allows a clearer picture of the progression of events both qualitatively and quantitatively.  相似文献   

17.
Replication of autosomal heterochromatin in man   总被引:1,自引:0,他引:1  
Summary In interphase nuclei of leukocytes and oral mucosa cells of normal human males and f males, two types of heterochromatin can he distinguished according to their location in the nucleus. Firstly, nucleolus-associated heterochromatin which consists of one large mass of autosomal segments surrounding the nucleolus, or several large masses if there appears to be more than one nucleolus in the same nucleus. Secondly, scattered heterochromatin composed of a large number of positively heteropycnotic bodies scattered throughout the nucleus and not directly associated with the nucleolus. The correspondence of this type of heterochromatin with chromosome segments is obtained at late prophase where several positively heteropycnotic regions belonging to the autosomes are found scattered throughout the nucleus.In human females sex-chromatin is present in addition to these two types. In leukocytes the sex-chromatin cannot be easily identified due to the large size and number of the scattered heterochromatic bodies, but in oral mucosa cells such a distinction is more easily achieved due to the smaller amount of autosomal heterochromatin.Nucleolus-associated and scattered heterochromatin from leukocytes of both sexes synthesized their DNA at a different period of time from the euchromatin. The asynchrony of replication observed in the heterochromatin at interphase is in agreement with the asynchrony between autosomes and within autosomes described by many authors at metaphase. This does not mean, however, that every segment or chromosome found replicating asynchronously at metaphase contains necessarily heterochromatin.Dedicated to Professor H. Bauer on the occasion of his 60th birthday. — This investigation was supported by a research grant to A. Lima-de-Faria from the Swedish Natural Science Research Council.  相似文献   

18.
1) The distribution pattern of heterochromatin characterized by Giemsa-banding, Quinacrine-banding and DNA-late replication has been studied in a reconstructed karyotype of Vicia faba with all chromosome pairs interdistinguishable. 2) By means of two Giemsa-banding methods both an interstitial and a centromeric Giemsa-banding pattern are described. The former one comprehends 14 marker and 18 additional bands of lower but characteristic visualization frequencies. The centromeric Giemsa-banding pattern consists of 7 bands, located in the centromeric and in the secondary constrictions of the metaphase chromosomes. Chromosomes with banding patterns intermediate between the interstitial and the centromeric Giemsa-banding have also been observed. 3) Quinacrine-banding revealed 10–12 brightly fluorescent bands and 1–2 regions of dim fluorescence. Most Q-bands occupy chromosomal positions also characterized by interstitial Giemsa bands. 4) The DNA-late replication pattern, analyzed both by autoradiography and by FPG-technique, revealed 9 late replicating chromosome regions; all of these correspond positionally to the sites of interstitial Giemsa bands. 5) The results are discussed with respect to (a) the relationships between the banding- and the DNA-late replication pattern; (b) banding and heterochromatin characteristics; (c) the correlations between the distribution of chromatid aberrations and special types of heterochromatin. — The patterns of heterochromatin distribution found are in basic conformity with the corresponding patterns reported for the standard karyotype of Vicia faba. The heterochromatin type characterized by both Giemsabanding and late replication is characteristic of all those chromosome regions which after mutagen treatments show up as aberration hot spots. Positional correlations between interstitial Giemsa marker bands and chemically induced isochromatid breaks are indicative of preferential aberration clustering in heterochromatin/euchromatin junctions.  相似文献   

19.
We present here the first detailed replication banding study of a marsupial species using the BrdU-replication technique. A comparison of the structural and replication bands of the chromosomes of Sminthopsis crassicaudata clearly demonstrates that the replication behavior is the same as the described for the chromosomes of eutherians. The early replicating segments correspond to R-bands, whereas the late-replicating regions tend to be situated within Q- and C-bands. Use of this technique clearly reveals an early and late replicating X chromosome. The very small Y chromosome can be subdivided into two replication segments, but no replication homologies can be demonstrated between the X and Y chromosomes of S. crassicaudata.  相似文献   

20.
Klaus Hägele 《Chromosoma》1971,33(3):297-318
Larvae of Chironomus th. thummi at the age of 10 hours after hatching were treated for 20 hours with 10–4 M FUdR. The salivary gland chromosomes were studied at fourth instar. FUdR induces chromosomal constrictions and partial breakage of various diameters ranging from 1/2 to less than 1/16 of the total cross section of the polytene chromosomes. Breaks were predominantly found in chromosome regions containing bands of high DNA content. By H3-thymidine-autoradiography it is demonstrated that bands which are frequently broken are late replicating. This is shown by histograms correlating the distribution of breaks over the chromosomes with labeling patterns obtained in late S.—As bands with a great amount of DNA do not only replicate late but also spend the longest time in DNA synthesis, it is assumed that they also represent the largest replicons. It is discussed if this is the reason why FUdR induces breaks preferentialy in bands of high DNA content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号