首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures were developed for flow cytometric analysis and sorting of mitotic chromosomes (flow cytogenetics) of common vetch (Vicia sativa L., 2n=12). Suspensions of intact chromosomes were prepared from root tips after cell cycle synchronization, formaldehyde fixation, and mechanical homogenization. On average, 3 × 105 morphologically intact chromosomes could be isolated from 25 root tips. Flow cytometric analysis of DAPI-stained chromosomes resulted in histograms of relative fluorescence intensity (flow karyotypes) containing four peaks, representing particular chromosomes and/or pairs of chromosomes with similar relative DNA content. Peaks I and II were assigned to chromosomes 6 and 5, respectively. These chromosomes could be sorted with a purity exceeding 90 %. The two remaining peaks on the flow karyotype were composite, each of them representing a pair of chromosomes. Chromosomes 1 and 3 were assigned to composite peak III while chromosomes 2 and 4 were assigned to composite peak IV. The chromosomes could be sorted with a purity of 99 % from both composite peaks. Bivariate flow karyotyping after simultaneous staining of chromosomes with DAPI and mithramycin was not found helpful in discriminating additional chromosomes. This study extends the number of legume species for which flow cytogenetics is available and provides a new tool for targeted and effective analysis and mapping of common vetch genome.  相似文献   

2.
3.
A new method is described for the isolation of large quantities of Vicia faba metaphase chromosomes. Roots were treated with 2.5 mM hydroxyurea for 18 h to accumulate meristem tip cells at the G1/S interface. After release from the block, the cells re-entered the cell cycle with a high degree of synchrony. A treatment with 2.5 M amiprophos-methyl (APM) was used to accumulate mitotic cells in metaphase. The highest metaphase index (53.9%) was achieved when, 6 h after the release from the hydroxyurea block, the roots were exposed to APM for 4 h. The chromosomes were released from formaldehyde-fixed root tips by chopping with a scalpel in LB01 lysis buffer. Both the quality and the quantity of isolated chromosomes, examined microscopically and by flow cytometry, depended on the extent of the fixation. The best results were achieved after fixation with 6% formaldehyde for 30 min. Under these conditions, 1 · 106 chromosomes were routinely obtained from 30 root tips. The chromosomes were morphologically intact and suitable both for high-resolution chromosome studies and for flow-cytometric analysis and sorting. After the addition of hexylene glycol, the chromosome suspensions could be stored at 4° C for six months without any signs of deterioration.Abbreviations APM amiprophos-methyl - DAPI 4,6-diamidino-2-phenylindole The authors thank Mrs. Jiina Eliáová for her excellent technical assistance and Dr. Slavomir Ondro for the supply of V. faba seeds. A gift sample of APM from the Mobay Corporation (Agricultural Chemicals Division, Kansas City, Mo., USA) is gratefully acknowledged.  相似文献   

4.
5.
Rudolf Herich 《Chromosoma》1965,17(2):194-198
Summary Cobalt exerts an effect on the structure of chromosomes and on the course and intensity of cell division in root tips of Vicia faba is.Despiralisation of chromosomes and an increase of the viscosity of the matrix substance causing stickiness of the chromosomes are induced by the treatment with cobalt.A cytostatic effect of cobalt was observed. The intensity of cell division is strikingly reduced after treatment with cobalt. Cobalt inhibits the passage of interphase cells into prophase so that this element can be considered to be a preprophase poison.  相似文献   

6.
胡金朝 《西北植物学报》2012,32(8):1573-1578
分别用考马斯亮蓝染色和间接免疫荧光标记,并运用荧光倒置显微镜和激光共聚焦显微镜,对慈姑根尖固定后酶解获得的去壁细胞和细胞团块以及根尖细胞分裂周期中微管骨架列阵进行详细观察,以探索高等植物微管周期的普遍性。结果表明:慈姑根尖固定后酶解可获得大量结构完整的去壁细胞与细胞团块;考马斯亮蓝染色观察可见,慈姑根尖细胞中丰富的蛋白物质以及处于不同分裂期的细胞核染色体;免疫荧光观察可见,慈姑根尖细胞周期中微管骨架保存较好,主要有周质微管、早前期带微管、纺缍体微管和成膜体微管4种循序变化的排列方式,构成了高等水生植物分裂细胞中典型的微管周期。实验结果证明,高等水生植物与陆生植物微管周期具有相似性,为植物微管周期概念提供了新的实例。  相似文献   

7.
Treflan has the ability to induce polyploidy inAllium cepa root tips. The frequency of polyploidy was reduced after allowing the roots to recover, which indicates that the process of polyploidy is a reversible one, if we apply Treflan for a short time (4 h). As soon as the chemioal is removed from the cells, they go on with their normal way in division. It was found that the concentration 350 × 10-5 ml Treflan per 100 ml water is an effective concentration in producing polyploidy in the roots ofAllium cepa. Treflan induced C-tumours in root tips ofAllium cepa. Two types of enlargement were noticed, complete swelling along the majority of root tips and complete swelling with a certain enlargement immediately after 2 mm terminal tips. The histological examination of these zones revealed that swellings were due to cell enlargement both in meristematic and in tumour zones. This conclusion was evidenced by the results obtained from the nucleoplasmic index.  相似文献   

8.
9.
The chromosome arrangement in radial metaphases has been analyzed in root tips of Crepis capillaris (2n=6), C. taraxicifolia (2n=8) and C. rubra (2n=10) by using two statistical approaches: 1) measuring the distances between both members of each pair of homologues as the number of intervening chromosomes on the equatorial ring, and 2) applying a new statistical approach developed by Lacadena et al. (1977) which permits to analyze homologous somatic association considering as a whole the n chromosome pairs of the complement. The occurrence of somatic association of homologous chromosomes is clearly demonstrated with both approaches. Previous results obtained by other authors in different materials and with different statistical methods are discussed. The karyotypes of C. taraxifolia and C. rubra are described with numerical data.  相似文献   

10.
Arabidopsis SUPERMAN (SUP) and its family members have been implicated in flower organogenesis and plant morphogenesis via the regulation of division or growth of cells. In this study, we characterized a new SUP-like zinc finger gene (AtZFP12). This gene is expressed around the bases of the axillary buds and at the junction between the inflorescence axis and flower stalks. It is also expressed at the boundary between the meristematic and elongation zones in root tips. Overexpression of its cDNA in transgenicArabidopsis reduced cell expansion, resulting in dwarfed plant growth. These results suggest the potential role ofAtZFP12 in the regulation of cell growth during the establishment of SOB in the shoot and transition zones in root tips.  相似文献   

11.
Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity.The emerging problems of increased food demand, declining water tables, and increasingly unpredictable growing environments due to climate change require increasingly adaptable varieties in order to maintain high rice (Oryza sativa) yields under variable conditions. Although genotype × environment variation has typically been viewed as a challenge to plant breeding efforts (Basford and Cooper, 1998; Cooper et al., 1999), the variation across environments known as adaptive phenotypic plasticity is likely to be an important trait for future crop plants, as it increases plant fitness and survival (Nicotra and Davidson, 2010). In some future growing seasons, rice may face edaphic stresses such as drought stress (due to low rainfall or reduced availability of irrigation) and lower nutrient availability (due to decreased fertilizer or water availability), whereas in other seasons, the growing conditions may remain optimal. Specialized root architectures, although effective for a specific stress-prone environment, can be functionally maladaptive in different conditions (Ho et al., 2005; Poot and Lambers, 2008). Therefore, increased plasticity in root traits in terms of allocational, morphological, anatomical, or developmental plasticity (Sultan, 2000) could improve crop performance across future growing seasons (Aspinwall et al., 2015).A number of previous studies have reported that plasticity in certain root traits conferred improved plant performance under stress or variable growth conditions to which the crop may be exposed. Under different types of drought stress, plasticity in root length density or total root length (Kano-Nakata et al., 2011; Tran et al., 2015) and lateral root length and/or branching (Suralta et al., 2010; Kano et al., 2011; Kano-Nakata et al., 2013) has been observed to improve shoot biomass, water uptake, and photosynthesis under drought in rice. Plasticity in the level of root aerenchyma development (measured as root porosity) was reported to result in higher shoot dry matter (Niones et al., 2013) and grain yield (Niones et al., 2012) under transient drought stress in rice, and plasticity in other anatomical traits has been hypothesized as a major reason for wheat (Triticum aestivum) being more drought tolerant than rice (Kadam et al., 2015). In a set of 42 native and crop species, plasticity in root depth was a better predictor of shoot response to drought than absolute root depth (Reader et al., 1993). Under low nitrogen, plasticity in specific root area, specific root length, and root tissue density conferred the least reduction in relative growth rate in 10 perennial herbaceous species (Useche and Shipley, 2010), and plasticity in maize (Zea mays) root growth angle improved yield (Trachsel et al., 2013). These examples provide strong evidence that root phenotypic plasticity can result in improved plant performance across variable conditions that include edaphic stress and would be an effective target for crop improvement efforts.Deciphering the genetic and molecular mechanisms controlling root phenotypic plasticity will be necessary for effective selection and crop breeding efforts. Despite the likely genetic complexity behind the regulation of trait expression according to environmental conditions, phenotypic plasticity is heritable and selectable (for review, see Nicotra and Davidson, 2010). Genetic regions identified to be related to root phenotypic plasticity traits in crops include quantitative trait loci (QTLs) for root hair length plasticity in maize under low phosphorus (Zhu et al., 2005a), lateral root number plasticity in maize under low phosphorus (Zhu et al., 2005b), plasticity in aerenchyma development in response to drought stress in rice (Niones et al., 2013), and plasticity in lateral root growth in response to drought stress in rice (Niones et al., 2015). In wheat translocation lines, a plastic response of increased root biomass to drought was located to chromosome 1BS (Ehdaie et al., 2011). These identified genetic regions can be used in selection for the development of stress-tolerant crops.Future rice crops will likely experience a range of soil conditions including prolonged aerobic periods, drought stress (progressive or intermittent), low soil fertility, and flooding. Rice may be established by either transplanting or direct seeding depending upon the amount and duration of initial rainfall. Therefore, the identification of root phenotypic plasticity traits suitable for adaptability to the particular range of conditions faced by rice crops, as well as the genetic regions responsible for those plasticity traits, may facilitate selection for wide adaptation of rice genotypes to variable conditions to confer stable yield. To address these needs, this study was conducted to identify the rice root phenotypic plasticity traits conferring adaptability across variable growth conditions by comparing contrasting genotypes from crosses between traditional and modern varieties. Our aim was to effectively quantify root architectural plasticity in order to identify which root traits may play the most important roles in rice adaptability. We hypothesized that the most plastic genotypes may show the most stable yields across environments.  相似文献   

12.
13.
A high-yield method for the isolation of intact nuclei and chromosomes in suspension from a variable number of pea root tips (1–10) has been developed. This procedure is based on a two-step cell-cycle synchronization of root-tip meristems to obtain a high mitotic index, followed by formaldehyde fixation and mechanical isolation of chromosomes and nuclei by homogenization. In the explant, up to 50% of metaphases were induced through a synchronization of the cell cycle at the G1/S interface with hydroxyurea (1.25 mM), followed, after a 3-h release, by a block in metaphase with amiprophos-methyl (10 M). The quality and quantity of nuclei and chromosomes were related to the extent of the fixation. Best results were obtained after a 30-min fixation with 2% and 4% formaldehyde for nuclei and chromosomes, respectively. The method described here allowed the isolation of nuclei and chromosomes, even from a single root tip, with a yield of 1×105/root and 1.4×105/root, respectively. Isolated suspensions were suitable for flow cytometric analysis and sorting and PRINS labelling with a rDNA probe.  相似文献   

14.
Sites of 18/25S RNA genes and those of secondary constrictions have been located in metaphase chromosomes ofV. narbonensis andV. sativa by RNA/DNA in situ hybridization and Feulgen staining. InV. narbonensis the rRNA genes are located in median position on one pair of chromosomes, which is the shortest of all in the genome. InV. sativa rRNA genes are located in two pairs of chromosomes. The two heterologous sites differ markedly in the level of labeling. Strong labeling is found in a submedian position of a short pair of chromosomes. Weaker labeling is found in a median position on the longest pair of chromosomes. InV. narbonensis andV. sativa the position of the grain clusters correlate with the position of the secondary constrictions in chromosomes stained by Feulgen. The implications with respect to karyograms ofV. narbonensis andV. sativa known from the literature are discussed.
  相似文献   

15.
Kotwaliwale C  Biggins S 《Cell》2006,127(6):1105-1108
Kinetochores direct attachment of chromosomes to microtubules of the mitotic spindle during cell division. Three recent studies in Cell, including one in this issue, reveal important new roles for two kinetochore protein complexes-Ndc80 and INCENP-Survivin-in establishing the correct attachment of chromosomes to spindle microtubules (Cheeseman et al., 2006, DeLuca et al., 2006 and Sandall et al., 2006).  相似文献   

16.
17.
18.
19.
Plant defense involves a complex array of biochemical interactions, many of which occur in the extracellular environment. The apical 1- to 2-mm root tip housing apical and root cap meristems is resistant to infection by most pathogens, so growth and gravity sensing often proceed normally even when other sites on the root are invaded. The mechanism of this resistance is unknown but appears to involve a mucilaginous matrix or “slime” composed of proteins, polysaccharides, and detached living cells called “border cells.” Here, we report that extracellular DNA (exDNA) is a component of root cap slime and that exDNA degradation during inoculation by a fungal pathogen results in loss of root tip resistance to infection. Most root tips (>95%) escape infection even when immersed in inoculum from the root-rotting pathogen Nectria haematococca. By contrast, 100% of inoculated root tips treated with DNase I developed necrosis. Treatment with BAL31, an exonuclease that digests DNA more slowly than DNase I, also resulted in increased root tip infection, but the onset of infection was delayed. Control root tips or fungal spores treated with nuclease alone exhibited normal morphology and growth. Pea (Pisum sativum) root tips incubated with [32P]dCTP during a 1-h period when no cell death occurs yielded root cap slime containing 32P-labeled exDNA. Our results suggest that exDNA is a previously unrecognized component of plant defense, an observation that is in accordance with the recent discovery that exDNA from white blood cells plays a key role in the vertebrate immune response against microbial pathogens.Root diseases caused by soil-borne plant pathogens are a perennial source of crop loss worldwide (Bruehl, 1986; Curl and Truelove, 1986). These diseases are of increasing concern, as pesticides like methyl bromide are removed from the market due to environmental concerns (Gilreath et al., 2005). One possible alternative means of crop protection is to exploit natural mechanisms of root disease resistance (Nelson, 1990; Goswami and Punja, 2008; Shittu et al., 2009). Direct observation of root systems under diverse conditions has revealed that root tips, in general, are resistant to infection even when lesions are initiated elsewhere on the same plant root (Foster et al., 1983; Bruehl, 1986; Curl and Truelove, 1986; Smith et al., 1992; Gunawardena et al., 2005; Wen et al., 2007). This form of disease resistance is important for crop production because root growth and its directional movement in response to gravity, water, and other signals can proceed normally as long as the root tip is not invaded. The 1- to 2-mm apical region of roots houses the root meristems required for root growth and cap development, and when infection does occur, root development ceases irreversibly within a few hours even in the absence of severe necrosis (Gunawardena and Hawes, 2002). Mechanisms underlying root tip resistance to infection are unclear, but the phenomenon appears to involve root cap “slime,” a mucilaginous matrix produced by the root cap (Morré et al., 1967; Rougier et al., 1979; Foster, 1982; Chaboud, 1983; Guinel and McCully, 1986; Moody et al., 1988; Knee et al., 2001; Barlow, 2003; Iijima et al., 2008). Within the root cap slime of cereals, legumes, and most other crop species are specialized populations of living cells called root “border cells” (Supplemental Fig. S1; Hawes et al., 2000). Border cell numbers increase in response to pathogens and toxins such as aluminum, and the cell populations maintain a high rate of metabolic activity even after detachment from the root cap periphery (Brigham et al., 1995; Miyasaka and Hawes, 2000).As border cells detach from roots of cereals and legumes, a complex of more than 100 proteins, termed the root cap secretome, is synthesized and exported from living cells into the matrix ensheathing the root tip (Brigham et al., 1995). The profile of secreted proteins changes in response to challenge with soil-borne bacteria (De-la-Peña et al., 2008). In pea (Pisum sativum), root tip resistance to infection is abolished in response to proteolytic degradation of the root cap secretome (Wen et al., 2007). In addition to an array of antimicrobial enzymes and other proteins known to be components of the extracellular matrix and apoplast of higher plants, the DNA-binding protein histone H4 unexpectedly was found to be present among the secreted proteins (Wen et al., 2007). One explanation for the presence of histone is global leakage of material from disrupted nuclei in dead cells, but no cell death occurs during delivery of the secretome (Brigham et al., 1995; Wen et al., 2007). An alternative explanation for the presence of a secreted DNA-binding protein is that extracellular DNA (exDNA) also is present in root cap slime.exDNA has long been known to be a component of slimy biological matrices ranging from purulent localized human infections to bacterial capsules, biofilms, and snail exudate (Sherry and Goeller, 1950; Leuchtenberger and Schrader, 1952; Braun and Whallon, 1954; Smithies and Gibbons, 1955; Catlin, 1956; Fahy et al., 1993; Allesen-Holm et al., 2006; Spoering and Gilmore, 2006; Qin et al., 2007; Izano et al., 2008). Specialized white blood cells in humans and other species including fish recently have been shown to deploy a complex neutrophil extracellular “trap” (NET), composed of DNA and a collection of enzymes, in response to infection (Brinkmann et al., 2004; Brinkmann and Zychlinsky, 2007; Palić et al., 2007; Wartha et al., 2007; Yousefi et al., 2008). NETs appear to kill bacterial, fungal, and protozoan pathogens by localizing them within a matrix of antimicrobial peptides and proteins (Urban et al., 2006; Wartha et al., 2007; Guimaraes-Costa et al., 2009). Several extracellular peptides and proteins implicated in neutrophil function, including histone, also are present within the pea root cap secretome (Wen et al., 2007). exDNA linked with extracellular histone is a structural component of NETs, and treatment with DNase destroys NET integrity and function (Wartha et al., 2007). Moreover, human pathogens including group A Streptococcus and Streptococcus pneumoniae release extracellular DNase (Sherry and Goeller, 1950). When these activities are eliminated by mutagenesis of the encoding genes, bacteria lose their normal ability to escape the NET and multiply at the site of infection (Sumby et al., 2005; Buchanan et al., 2006). Here, we report that, in addition to histone and other secretome proteins, exDNA also is a component of root cap slime. When this exDNA is digested enzymatically, root tip resistance to infection is abolished.  相似文献   

20.
Summary Panax ginseng hairy root cultures were established by infecting petiole segments with Agrobacterium rhizogenes strain 15834. Hairy root segments including root tips placed onto phytohormone-free 1/2 Murashige and Skoog solid medium and stored at 4 °C in the dark for 4 months, resumed elongation when the temperature was raised to 25 °C in the dark. For cryopreservation, a vitrification method was applied. Root tips precultured with 0.1 mg/l 2,4-D for 3 days and dehydrated with PVS2 solution for 8 minutes prior to immersion into liquid nitrogen had a survival rate of 60 % and could regenerate. The hairy roots regenerated from cryopreserved root tips grew well and showed the same ginsenoside productivity and patterns as those of the control hairy roots cultured continuously at 25 °C. The conservation of T-DNAs in the regenerated hairy roots was proved by PCR analysis.Abbreviations 1/2 MS a half strength Murashige and Skoog (1962) - B5 Gamborg B5 (Gamborg et al. 1968) - WP woody plant (Lloyd and McCown 1980) - RC root culture (Thomas and Davey 1982) - RCI root culture medium containing 100 mg/l myoinositol - HF phytohormone-free - IAA indole-3-acetic acid - IBA indole-3-butyric acid - 2,4-D 2,4-dichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid - PCR polymerase chain reaction - PVS2 plant vitrification solution 2 (Sakai et al., 1990) - FDA fluorecein diacetate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号