共查询到12条相似文献,搜索用时 15 毫秒
1.
2.
Development and utilization of a new chemically‐induced soybean library with a high mutation density
Zhongfeng Li Lingxue Jiang Yansong Ma Zhongyan Wei Huilong Hong Zhangxiong Liu Jinhui Lei Ying Liu Rongxia Guan Yong Guo Longguo Jin Lijuan Zhang Yinghui Li Yulong Ren Wei He Ming Liu Nang Myint Phyu Sin Htwe Lin Liu Bingfu Guo Jian Song Bing Tan Guifeng Liu Maiquan Li Xianli Zhang Bo Liu Xuehui Shi Sining Han Sunan Hua Fulai Zhou Lili Yu Yanfei Li Shuang Wang Jun Wang Ruzhen Chang Lijuan Qiu 《植物学报(英文版)》2017,59(1):60-74
Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate (EMS)‐induced soybean (Glycine max) population, consisting of 21,600 independent M2 lines, was developed. Over 1,000 M4 (5) families, with diverse abnormal phenotypes for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed significantly decreased chlorophyll (Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to MinnGold, where a different single nucleotide polymorphism variation in the Mg‐chelatase subunit gene (ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker‐assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean. 相似文献
3.
Klaus Pillen Kevin B. Alpert James J. Giovannoni Martin W. Ganal Steven D. Tanksley 《Plant Molecular Biology Reporter》1996,14(1):58-67
An improved procedure is presented to select clones from a tomato yeast artificial chromosome (YAC) library. The procedure
is based exlcusively on the polymerase chain reaction (PCR). We combined DNA from approximately 36,000 YAC clones in pools
containing 96-single YAC clones from one master plate and further in super pools representing 10 master plates. This pooling
strategy allows the selection of single YAC clones homologous to a target sequence after three rounds of PCR using super pools,
single pools, and single YAC clones as a template. Single YAC clones were spheroplasted prior to the third PCR round in order
to omit the conventional radioactive colony hybridization step. To date, we applied this PCR-based selection strategy to isolate
clones homologousto ten different sequence-tagged sites (STS) that are linked to genes targeted for map-based cloning. The
selection of YAC clones can be readily accomplished within three days. The PCR-based screening strategy is easy to set up
and contributes to a further acceleration of the construction of YAC contigs. 相似文献
4.
Adriana-Michelle Wolf Pérez Pietro Sormanni Jonathan Sonne Andersen Laila Ismail Sakhnini Ileana Rodriguez-Leon Jais Rose Bjelke 《MABS-AUSTIN》2019,11(2):388-400
Despite major advances in antibody discovery technologies, the successful development of monoclonal antibodies (mAbs) into effective therapeutic and diagnostic agents can often be impeded by developability liabilities, such as poor expression, low solubility, high viscosity and aggregation. Therefore, strategies to predict at the early phases of antibody development the risk of late-stage failure of antibody candidates are highly valuable. In this work, we employ the in silico solubility predictor CamSol to design a library of 17 variants of a humanized mAb predicted to span a broad range of solubility values, and we examine their developability potential with a battery of commonly used in vitro and in silico assays. Our results demonstrate the ability of CamSol to rationally enhance mAb developability, and provide a quantitative comparison of in vitro developability measurements with each other and with more resource-intensive solubility measurements, as well as with in silico predictors that offer a potentially faster and cheaper alternative. We observed a strong correlation between predicted and experimentally determined solubility values, as well as with measurements obtained using a panel of in vitro developability assays that probe non-specific interactions. These results indicate that computational methods have the potential to reduce or eliminate the need of carrying out laborious in vitro quality controls for large numbers of lead candidates. Overall, our study provides support to the emerging view that the implementation of in silico tools in antibody discovery campaigns can ensure rapid and early selection of antibodies with optimal developability potential. 相似文献
5.
Denden S Leban N Hayek D Knani J Chibani JB Khelil AH 《Genetics and molecular biology》2010,33(4):633-636
Alpha1-antitrypsin (AAT) is a highly polymorphic protein with more than 120 variants that are classified as normal (normal protein secretion), deficient (reduced circulating AAT level caused by defective secretion) or null (no protein secretion). Alpha1-antitrypsin deficiency, one of the most common genetic disorders, predisposes adults to pulmonary emphysema and, to a lesser extent, chronic liver disease and cirrhosis. In this report, we provide additional sequence data for alpha1-antitrypsin based on the characterization of a novel variant detected in a 53-year-old heterozygous patient with chronic obstructive pulmonary disease. The mutation occurred on a PI*M2 base allele and was characterized by a T → C transition at nt 97 in exon II that led to the replacement of phenylalanine by leucine (F33L). Since the mutation was found in the heterozygous state with the expression of a normally secreted variant (PI*M1) it was not possible to assess the pattern of F33L secretion. However, computational analyses based on evolutionary, structural and functional information indicated a reduction of 23 Å 3 in the side chain volume and the creation of a cavity in the protein hydrophobic core that likely disturbed the tridimensional structure and folding of AAT. The accuracy of the in silico prediction was confirmed by testing known mutations. 相似文献
6.
Taylor A. Anderson Martha A. Sudermann Darlene M. DeJong David M. Francis Christine D. Smart Martha A. Mutschler 《The Plant journal : for cell and molecular biology》2024,117(2):404-415
By conducting hierarchical clustering along a sliding window, we generated haplotypes across hundreds of re-sequenced genomes in a few hours. We leveraged our method to define cryptic introgressions underlying disease resistance in tomato (Solanum lycopersicum L.) and to discover resistant germplasm in the tomato seed bank. The genomes of 9 accessions with early blight (Alternaria linariae) disease resistance were newly sequenced and analyzed together with published sequences for 770 tomato and wild species accessions, most of which are available in germplasm collections. Identification of common ancestral haplotypes among resistant germplasm enabled rapid fine mapping of recently discovered quantitative trait loci (QTL) conferring resistance and the identification of possible causal variants. The source of the early blight QTL EB-9 was traced to a vintage tomato named ‘Devon Surprise’. Another QTL, EB-5, as well as resistance to bacterial spot disease (Xanthomonas spp.), was traced to Hawaii 7998. A genomic survey of all accessions forecasted EB-9-derived resistance in several heirloom tomatoes, accessions of S. lycopersicum var. cerasiforme, and S. pimpinellifolium PI 37009. Our haplotype-based predictions were validated by screening the accessions against the causal pathogen. There was little evidence of EB-5 prevalence in surveyed contemporary germplasm, presenting an opportunity to bolster tomato disease resistance by adding this rare locus. Our work demonstrates practical insights that can be derived from the efficient processing of large genome-scale datasets, including rapid functional prediction of disease resistance QTL in diverse genetic backgrounds. Finally, our work finds more efficient ways to leverage public genetic resources for crop improvement. 相似文献
7.
破色期番茄果实均一化cDNA沉默文库的构建和功能基因筛选模型的初步建立 总被引:2,自引:0,他引:2
番茄果实的成熟是由多基因精细调控的一个过程.利用破色期番茄果实,根据复性动力学原理在mRNA水平进行均一化操作使高丰度和低丰度的mRNA丰度接近.然后把均一化之后mRNA反转录得到cDNA,再与基因沉默载体pTRV重组,最后把构建好的载体通过电转化的方法转入到GV3101农杆菌中,从而建立起破色期番茄果实均一化cDNA沉默文库.通过番茄果实中病毒诱导基因沉默技术,对cDNA沉默文库进行初步筛选,从而确定功能基因筛选模型.在模型建立阶段,以番茄红素合成途径相关的PDS基因作为内标基因,在100个混合农杆菌样中,成功筛选到了PDS基因. 相似文献
8.
9.
Muhammad Nasir Nafees Ahmad Christian MK Sieber Amir Latif Salman Akbar Malik Abdul Hameed 《Journal of biomedical science》2013,20(1):70
Background
Xeroderma Pigmentosum (XP) is a rare skin disorder characterized by skin hypersensitivity to sunlight and abnormal pigmentation. The aim of this study was to investigate the genetic cause of a severe XP phenotype in a consanguineous Pakistani family and in silico characterization of any identified disease-associated mutation.Results
The XP complementation group was assigned by genotyping of family for known XP loci. Genotyping data mapped the family to complementation group A locus, involving XPA gene. Mutation analysis of the candidate XP gene by DNA sequencing revealed a novel deletion mutation (c.654del A) in exon 5 of XPA gene. The c.654del A, causes frameshift, which pre-maturely terminates protein and result into a truncated product of 222 amino acid (aa) residues instead of 273 (p.Lys218AsnfsX5). In silico tools were applied to study the likelihood of changes in structural motifs and thus interaction of mutated protein with binding partners. In silico analysis of mutant protein sequence, predicted to affect the aa residue which attains coiled coil structure. The coiled coil structure has an important role in key cellular interactions, especially with DNA damage-binding protein 2 (DDB2), which has important role in DDB-mediated nucleotide excision repair (NER) system.Conclusions
Our findings support the fact of genetic and clinical heterogeneity in XP. The study also predicts the critical role of DDB2 binding region of XPA protein in NER pathway and opens an avenue for further research to study the functional role of the mutated protein domain. 相似文献10.
Mutations of 3 beta hydroxysteroid dehydrogenase type II (HSD3B2) gene result in different clinical consequences. We explain a patient who demonstrated a salt wasting form of 3βHSD deficiency in infancy. Signs of hyponatremia and hyperkalemia were recognized in the infant with ambiguous genitalia and perineal hypospadias. The 46,XY male was genotyped by direct sequencing of HSD3B2 gene. Steroid profiles showed elevated concentration of 17 hydroxyprogesterone, and decrease in concentration of cortisol, and testosterone. Dehydroepiandrotone (DHEA) to androstenedione ratio had 6 fold increases. Direct sequencing of the patient revealed homozygous missense A82P mutation in exon 3. This mutation was confirmed by segregation analysis of the parents. Bioinformatic tools were used for in silico structural and functional analyses. Also, the pathological effect of the mutation was validated by different software. Alanine is a conserved amino acid in the membrane binding domain of the enzyme and proline substitution was predicted to destabilize the protein. This report may highlight the importance of the screening programs of the disorder in Iran. 相似文献
11.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants. 相似文献
12.
Bharti Badhani 《Journal of biomolecular structure & dynamics》2017,35(9):1950-1967
Gallic acid and its derivatives exhibit a diverse range of biological applications, including anti-cancer activity. In this work, a data-set of forty-six molecules containing the galloyl moiety, and known to show anticarcinogenic activity against the MCF-7 human cancer cell line, have been chosen for pharmacophore modeling and 3D-Quantitative Structure Activity Relationship (3D-QSAR) studies. A tree-based partitioning algorithm has been used to find common pharmacophore hypotheses. The QSAR model was generated for three, four, and five featured hypotheses with increasing PLS factors and analyzed. Results for five featured hypotheses with three acceptors and two aromatic rings were the best out of all the possible combinations. On analyzing the results, the most robust (R2?=?.8990) hypothesis with a good predictive power (Q2?=?.7049) was found to be AAARR.35. A good external validation (R2 = .6109) was also obtained. In order to design new MCF-7 inhibitors, the QSAR model was further utilized in pharmacophore-based virtual screening of a large database. The predicted IC50 values of the identified potential MCF-7 inhibitors were found to lie in the micromolar range. Molecular docking into the colchicine domain of tubulin was performed in order to examine one of the probable mechanisms. This revealed various interactions between the ligand and the active site protein residues. The present study is expected to provide an effective guide for methodical development of potent MCF-7 inhibitors. 相似文献